

I n s i d e W e b O b j e c t s

What’s New in WebObjects 5.2

November 2002



 Apple Computer, Inc.
© 2000–2002 Apple Computer, Inc.
All rights reserved.
No part of this publication may be
reproduced, stored in a retrieval
system, or transmitted, in any form or
by any means, mechanical, electronic,
photocopying, recording, or
otherwise, without prior written
permission of Apple Computer, Inc.,
with the following exceptions: Any
person is hereby authorized to store
documentation on a single computer
for personal use only and to print
copies of documentation for personal
use provided that the documentation
contains Apple’s copyright notice.
The Apple logo is a trademark of
Apple Computer, Inc.
Use of the “keyboard” Apple logo
(Option-Shift-K) for commercial
purposes without the prior written
consent of Apple may constitute
trademark infringement and unfair
competition in violation of federal
and state laws.
No licenses, express or implied, are
granted with respect to any of the
technology described in this book.
Apple retains all intellectual property
rights associated with the technology
described in this book. This book is
intended to assist application
developers to develop applications
only for Apple-labeled or
Apple-licensed computers.
Every effort has been made to ensure
that the information in this document
is accurate. Apple is not responsible
for typographical errors.
Apple Computer, Inc.
1 Infinite Loop
Cupertino, CA 95014
408-996-1010
Apple, the Apple logo, Mac,
QuickTime, and
WebObjects are trademarks of Apple
Computer, Inc., registered in the
United States and other countries.

Enterprise Objects and Enterprise
Objects Framework are trademarks of
NeXT Software, Inc., registered in the
United States and other countries.
Java and all Java-based marks are
trademarks or registered trademarks
of Sun Microsystems, Inc. in the
United States and other countries.
Simultaneously published in the
United States and Canada.

Even though Apple has reviewed this
manual, APPLE MAKES NO
WARRANTY OR REPRESENTATION,
EITHER EXPRESS OR IMPLIED, WITH
RESPECT TO THIS MANUAL, ITS
QUALITY, ACCURACY,
MERCHANTABILITY, OR FITNESS
FOR A PARTICULAR PURPOSE. AS A
RESULT, THIS MANUAL IS SOLD “AS
IS,” AND YOU, THE PURCHASER, ARE
ASSUMING THE ENTIRE RISK AS TO
ITS QUALITY AND ACCURACY.

IN NO EVENT WILL APPLE BE LIABLE
FOR DIRECT, INDIRECT, SPECIAL,
INCIDENTAL, OR CONSEQUENTIAL
DAMAGES RESULTING FROM ANY
DEFECT OR INACCURACY IN THIS
MANUAL, even if advised of the
possibility of such damages.

THE WARRANTY AND REMEDIES SET
FORTH ABOVE ARE EXCLUSIVE AND
IN LIEU OF ALL OTHERS, ORAL OR
WRITTEN, EXPRESS OR IMPLIED. No
Apple dealer, agent, or employee is
authorized to make any modification,
extension, or addition to this warranty.

Some states do not allow the exclusion or
limitation of implied warranties or
liability for incidental or consequential
damages, so the above limitation or
exclusion may not apply to you. This
warranty gives you specific legal rights,
and you may also have other rights which
vary from state to state.

Contents

Chapter 1 What’s New in WebObjects 5.2 5

Servlet Single Directory Deployment 5
How It Works 6
Project Builder Support 6
Directory Layout 7
web.xml 8
Compatibility 8

Launch Architecture 8
WebObjects Extensions Directory 9
Launch Scripts 9
Servlet Deployments 9
Project Builder Support 10

Streaming File Uploads 10
Basic Streaming 11
formValues Method of WORequest 11
WOFileUpload 12
WOMultipartIterator Class 13
Servlets 13
Web Server Adaptors 13

Enterprise Objects 14
Memory Management 14
Undo Managers 16
Concurrency and Locking 17
Concurrent Database Operations 20
EOCustomObject Relationship Methods 21

Java Client 22
Web Start 22
Architectural Enhancements 23
New Controllers 25
Dynamic Layout 26
Actions 27
Titles and Enumeration Controllers 28
Locales, Languages, Platforms 29
Other Enhancements 30
Conversion Guide 33
3
  Apple Computer, Inc. November 2002

C O N T E N T S
4
  Apple Computer, Inc. November 2002

Servlet Single Directory Deployment

5



 Apple Computer, Inc. November 2002

C H A P T E R 1

1 What’s New in WebObjects 5.2

This document describes the major new features of WebObjects 5.2 and describes
the most significant bug fixes and enhancements to the product.

This release includes significant changes and enhancements to Enterprise Objects
and Java Client, includes enhancements to application deployment, adds support
for streaming HTTP requests and responses, and adds custom bootstrap classes to
help with long command path problems on Windows.

It is divided into these sections:

�

“Servlet Single Directory Deployment” (page 5)

�

“Launch Architecture” (page 8)

�

“Enterprise Objects” (page 14)

�

“Streaming File Uploads” (page 10)

�

“Java Client” (page 22)

Servlet Single Directory Deployment

WebObjects 5.1 added support for deploying WebObjects applications in J2EE
servlet containers. However, this support still required the presence of the
WebObjects deployment runtime on the J2EE server. The new Servlet Single
Directory Deployment (SSDD) feature of WebObjects 5.2 removes this requirement.

6

Servlet Single Directory Deployment



 Apple Computer, Inc. November 2002

C H A P T E R 1

What’s New in WebObjects 5.2

Now, you can deploy a WebObjects application into a single, self-contained
directory in a supported J2EE servlet container. The self-contained directory
contains the application’s

.woa

 and all the frameworks the application requires.
This feature does not affect WebObjects applications that are deployed with the
WebObjects application server (Monitor and wotaskd). That is, this feature doesn’t
provide a facility to the WebObjects application server to deploy applications in a
single, self-contained directory.

How It Works

Many J2EE containers support the deployment of servlet applications in a directory
rather than in a

.war

 file. The directory is an expanded

.war

 file and has the same
name as the

.war

 file minus the extension.

When you build an application for deployment in a servlet container, you can
choose to build it as a SSDD. When you choose this option, rather than build a

.woa

directory and a separate

.war

 file, the build script creates a new directory with the
same name as the application and copies the application’s

.woa

 and any frameworks
on which it depends inside the directory.

When the application runs in the container, a custom class loader loads the
WebObjects classes from the

.woa

 and the frameworks that are inside the SSDD
directory. This removes the requirement of the WebObjects runtime to be installed
on the J2EE application server.

Project Builder Support

The Project Builder and ProjectBuilderWO setup assistants for all types of
WebObjects applications now allow you to choose SSDD deployment when
creating a new project. Simply choose Deploy as a Servlet Single Directory
Deployment in the Enable J2EE Integration window in the assistant, as shown
in Figure 1-1.

C H A P T E R 1

What’s New in WebObjects 5.2

Servlet Single Directory Deployment

7



 Apple Computer, Inc. November 2002

Figure 1-1

Choose SSDD when creating a project

To enable SSDD for existing projects, add a build setting or makefile variable named

SERVLET_SINGLE_DIR_DEPLOY

 with the value of

YES

. You must also add a build setting
or makefile variable named

SERVLET_SINGLE_DIR_DEPLOY_LICENSE

 with a value that is
a valid WebObjects deployment key.

Directory Layout

A servlet single directory deployment directory is organized like this:

MyApp/

Extensions/

LICENSE

 (the deployment license agreement)

Library/

8

Launch Architecture



 Apple Computer, Inc. November 2002

C H A P T E R 1

What’s New in WebObjects 5.2

Frameworks/

 (copies of all the required frameworks)

classes/

lib/

MyApp.woa/

 (copy of the

.woa

)

tlds/

web.xml

web.xml

The content requirements of the

web.xml

 file are different for an application
deployed with SSDD. The variables

WOROOT

,

LOCALROOT

, and

WOAINSTALLROOT

 are
not necessary. In their place, the classpath is specified by

WEBINFROOT

, which is
calculated at runtime to be the directory from which the WebObjects application
is running.

Compatibility

SSDD has been tested with Tomcat 3.x and Tomcat 4.0.x on Mac OS X and with
WebLogic 7.x on Windows and Solaris. While WebSphere is now supported as a
deployment platform on Windows, SSDD does not work with WebSphere, so you
must deploy the

.war

 file and install the WebObjects runtime manually.

Launch Architecture

The class WOBootstrap has been added to help WebObjects applications launch.
It uses a custom class loader to dynamically load

.jar

 files into WebObjects
applications. It was primarily implemented to solve the long command path
problem on Windows. It loads

.jar

 files from a new WebObjects Extensions
directory.

C H A P T E R 1

What’s New in WebObjects 5.2

Launch Architecture

9



 Apple Computer, Inc. November 2002

WebObjects Extensions Directory

The new bootstrap class enables a new WebObjects Extensions directory. On
Windows and Solaris, its path is

$NEXT_ROOT/Local/Library/WebObjects/
Extensions/

. On Mac OS X, its path is

/Library/WebObjects/Extensions/

. Any

.jar

files in this directory will be loaded dynamically by the WOBootstrap class at
runtime. Classes in those

.jar

 files are loaded by the same class loader that loads
the WebObjects classes (all the WebObjects frameworks as well as the application’s
classes and frameworks). This solves a lot of class loader–related issues in
WebObjects applications.

It is recommended that WebObjects-specific

.jar

 files from the ThirdPartyJars
directory that were previously placed in the Java extensions directory (

/Library/
Java/Extensions/

 on Mac OS X) be placed instead in the WebObjects Extensions
directory. There are two exceptions to this recommendation.

If you installed WebObjects Developer on Mac OS X, the JDBC and JTA drivers
should still be placed in

/Library/Java/Extensions/

. If you have WebObjects
Developer installed on Windows, the JDBC driver needs to be installed in a location
specified in

JavaConfig.plist

. Note that the Windows JDBC driver for WebObjects
Development must be the Java 1.1.8 version, not the 2.0 version.

Launch Scripts

One benefit of the launch architecture changes is that launch scripts are greatly
simplified. Since the classpath is now generated at runtime and passed to the
custom class loader, the classpath for the launch script is minimal. In most cases,
the

-classpath

 flag in the launch script is

-classpath WOBootstrap.jar

This should alleviate problems relating to argument length restrictions when
launching WebObjects applications on Windows.

Servlet Deployments

WebObjects applications deployed in J2EE servlet containers also take advantage of
the new launch architecture. The servlet adaptor dynamically loads classes in the
WebObjects Extensions directory at runtime.

10

Streaming File Uploads



 Apple Computer, Inc. November 2002

C H A P T E R 1

What’s New in WebObjects 5.2

If deployed as a Servlet Single Deployment Directory, the WebObjects application
includes an Extensions directory in the

WEB-INF

 directory that has a copy of all the

.jar

 files in the WebObjects Extensions directory at compile time. SSDD uses

.jar

files in the application-specific Extensions directory (the one in the

WEB-INF

directory in the application’s directory) in preference to

.jar

 files in the global
Extensions directory (in

/Library/WebObjects/Extensions/

).

Note that the WebObjects Extensions directory exhibits a loading behavior different
from that of the

WEB-INF/lib

 and

WEB-INF/classes

 directories. Classes in those
directories are loaded in a parent of the class loader that loads all the WebObjects
classes. Classes in either WebObjects Extensions directory are loaded by the same
class loader that loads all of the WebObjects classes.

Project Builder Support

Existing Project Builder applications can take advantage of the new launch
architecture by simply adding a compiler setting and rebuilding. First choose Edit
Active Target from the Project menu. Look for the Java Compiler Settings item and
add this flag to the Other Java Compiler Settings text area:

-extdirs /Library/WebObjects/Extensions:/Library/Java/Extensions:/System/
Library/Java/Extensions:/System/Library/Frameworks/JavaVM.framework/Home/
lib/ext

Existing ProjectBuilderWO applications need only be rebuilt to take advantage of
the new launch architecture.

Streaming File Uploads

A long-requested feature of WebObjects is the ability to stream HTTP request and
response content. This is a useful feature for applications in which users upload or
download megabytes of data in a single request or response. Other benefits of this
feature include a greatly reduced memory footprint for all sizes of file uploads.

C H A P T E R 1

What’s New in WebObjects 5.2

Streaming File Uploads 11
  Apple Computer, Inc. November 2002

This feature allows you to get the raw content of an HTTP request as a
java.io.InputStream object. You can also easily stream raw data back to the client.
The HTTP adaptors support this feature as do applications that run in servlet
containers.

This feature required new API and new bindings on some of the dynamic elements.
This means that parts of existing applications must be rewritten to take advantage
of this feature.

Basic Streaming
WORequest objects are now backed by a java.io.InputStream object that represents
their content. However, because of the design of the WebObjects frameworks, in
most cases all of the content of a stream is read into memory before it is parsed. It is
possible to get the raw data of a request as an InputStream (thus avoiding the
memory overhead), however, but this requires using the
StreamActionRequestHandler (wis) with a direct action.

WOResponse content can also be backed by an InputStream object representing
their content. However, when you use an InputStream, you must not use the regular
content-managing methods. The reverse is also true. If you use an InputStream,
only the contents of the InputStream are returned to the client. The WebObjects
frameworks do not use an InputStream to return content to the client because of
their design. See the revised FileUpload example for an example of streaming a
potentially large file to the client.

formValues Method of WORequest
The behavior of the formValues method depends on the content being transmitted.
For nonstreaming content, its behavior is unchanged from previous versions of
WebObjects. However, in the case where the content is multipart/form-data, its
behavior is as follows.

On each call to the formValues method (implicit or explicit), the multipart/form-data
is parsed until the first unfinished file upload. An unfinished file upload is one in
which the NSData representing the file contents have not been used or looked at.
As soon as the NSData is touched, the file is read into memory and the upload is
considered finished.

12 Streaming File Uploads
  Apple Computer, Inc. November 2002

C H A P T E R 1

What’s New in WebObjects 5.2

Once an unfinished upload is reached, it places the information related to that file
upload in the formValues dictionary and stops. Subsequent calls to the formValues
method follow the same pattern. (Typically, a WebObjects dynamic element calls
formValues, looks for and uses the information it requires so that the next call to
formValues advances farther in the multipart/form-data content).

In the case where there is no file upload, the first call to the formValues method
causes all the content to be completely parsed.

To do true streaming, you need to use the new bindings on the WOFileUpload
dynamic element, as described in “WOFileUpload” (page 12), or the new
WOMultipartIterator class, as described in “WOMultipartIterator Class” (page 13).

WOFileUpload
The WOFileUpload dynamic element has several new attributes to support
streaming. The data, filePath, mimeType, and copyData attribute’s behavior is
unchanged.

These are the new bindings:

� inputStream: WebObjects sets this attribute to an InputStream representing the
contents of the file upload. This binding can be used only when it is the only
WOFileUpload element on the page.

Also, within a form with other input elements, it has to be the last element. This
implies that the form’s multipleSubmit attribute must not be set to true when
it contains a WOFileUpload with the InputStream attribute. Otherwise, the
WOFileUpload element raises an exception. This attribute is bound by the end
of the file content data.

� bufferSize: Sets the size (in bytes) of the buffer used by the outputStream
and streamToFilePath attributes. The default buffer size is 512 KB. There is
no reasonable restriction on the buffer size.

� outputStream: WebObjects copies the file upload data from the content to the
outputStream specified by this attribute.

� streamToFilePath: WebObjects writes the file upload data from the content
directly to the file path specified in this attribute. This is an atomic operation—
the data is written to a temporary file, which is renamed when the process is
complete.

C H A P T E R 1

What’s New in WebObjects 5.2

Streaming File Uploads 13
  Apple Computer, Inc. November 2002

� overwrite: When streamToFilePath is specified, this binding determines
whether WebObjects should overwrite an existing file. Defaults to false.

� finalFilePath: When streamToFilePath is specified, its value is set to the actual
file location (it may differ from the streamToFilePath value if there is a problem
renaming the file).

The new bindings are demonstrated in the revised FileUpload example.

WOMultipartIterator Class
WOMultipartIterator is a new class whose reference can be retrieved from a
WORequest object. It represents the content of a multipart/form-data request as a
series of WOMultipartIterator.WOFormData objects (retrieved by calling the
nextFormData method). Each WOMultipartIterator.WOFormData object has headers
and content. The content can be retrieved as an NSData, as an NSDictionary of
formValues (both of which read all the content into memory), or as an InputStream.
For file uploads, it is convenient to use the InputStream API as it does not read all
the data into memory.

The WOMultipartIterator is intended for use in direct actions or custom dynamic
elements. See the revised FileUpload example for to see how WOMultipartIterator
is used in a direct action.

Servlets
The JavaWOJSPServlet framework has been updated to stream requests and
responses as well. Running a WebObjects application in a servlet container should
no longer automatically cause all the content to be buffered in memory.

Web Server Adaptors
When the Web server adaptor receives a new request from the client (browser), it
looks at the content length header to decide whether to stream or buffer the content.
A large chunk of content data is read immediately before the application instance is
contacted. The size of this chunk is an adaptor compile-time setting in config.h,
REQUEST_STREAMED_THRESHOLD, which defaults to one megabyte).

14 Enterprise Objects
  Apple Computer, Inc. November 2002

C H A P T E R 1

What’s New in WebObjects 5.2

If the content data size is less than this, the entire content is buffered and the rest of
the request processing behaves as in previous versions of WebObjects. However, if
there is more than one megabyte of content data, then the application instance is
contacted, the initial one megabyte is sent, then the rest of the content is streamed.

In addition, the response from the application instance is now unconditionally
streamed back to the client. There is another compile-time setting
(RESPONSE_STREAMED_SIZE) that controls the size of the data chunks. The default
value is the smaller of the TCP read or write socket buffer size of the adaptor, which
is 32 KB. It is possible to effectively revert to not streaming any data by setting these
buffers to large values and recompiling the adaptor.

Enterprise Objects

Significant architectural changes have been made to Enterprise Objects in
WebObjects 5.2, especially with regard to memory management and concurrency
(multithreading, with particular attention to locking).

Unfortunately several of the changes that were implemented required API changes
and so WebObjects 5.2 is not binary compatible with previous versions, including 5.1. For
most developers, the Enterprise Object classes remain source compatible, although
a few advanced users may need to implement a couple of additional methods.

The most notable change is that EOObjectStore and EOObjectStoreCoordinator now
implement the NSLocking interface. The API documentation has been updated for
these and other changes in Enterprise Objects and includes more specific details.

Memory Management
In previous releases of WebObjects, EOEditingContext objects held strong
references to the EOEnterpriseObjects registered with them. The
EOEnterpriseObjects themselves did not maintain any direct reference to
their EOEditingContext. Rather, the EOObserverCenter mediated between the
two groups.

C H A P T E R 1

What’s New in WebObjects 5.2

Enterprise Objects 15
  Apple Computer, Inc. November 2002

Additional memory relating to each EOEnterpriseObject was held in the row-level
snapshots by the EODatabase object, which is typically accessed indirectly through
an EODatabaseContext object. Finally, the NSUndoManager, which most
EOEditingContext objects possess, could also consume a significant amount of
memory to facilitate the undo and redo capabilities of Enterprise Objects.

In WebObjects 5.2, EOEditingContext objects now hold weak references to the
EOEnterpriseObjects registered with them. These EOEnterpriseObjects in turn each
hold a strong reference to the EOEditingContext in which they are registered.
(Remember, a single EOEnterpriseObject can be registered in exactly one
EOEditingContext at any one time). Several exceptions exist.

First, EOEditingContext objects hold all inserted, deleted, or modified objects by
strong references. These strong references are cleared by the methods saveChanges,
revert, invalidateAllObjects, and reset. They may also be cleared by the methods
invalidateObjectsWithGlobalIDs, refaultObject, refreshObject, undo, and redo,
depending on the specifics of the scenario (that is, whether the changed state is
forcefully discarded or not).

Second, EOSharedEditingContext objects always hold their registered objects with
strong references.

Third, the methods setInstancesRetainRegisteredObjects and
setRetainsRegisteredObjects can programmatically force an EOEditingContext to
hold strong references to all the EOEnterpriseObjects registered with it. However,
this can be done only on an EOEditingContext with which nothing is currently
registered (no EOEnterpriseObjects have been fetched into it).

Although Enterprise Objects now uses weak references more extensively, the Java
garbage collector exhibits some degree of nondeterminism. As a consequence,
you cannot use the registeredObjects array as a permanent repository of
EOEnterpriseObjects. The contents of the array can change at any time since the
garbage collector runs independently in a separate thread (in most Java
implementations).

In addition, objects fetched from a data store and then discarded eventually
disappear from the EOEditingContext. You can work around this by maintaining
your own strong reference to the EOEnterpriseObjects in question. It should be
sufficient to put the EOEnterpriseObjects in an array, a set, or in some other data
structure. You can also use setRetainsRegisteredObjects.

16 Enterprise Objects
  Apple Computer, Inc. November 2002

C H A P T E R 1

What’s New in WebObjects 5.2

The memory allocated for the database row-level snapshots that corresponds
to garbage-collected EOEnterpriseObjects is released some time after the
EOEnterpriseObjects have been garbage collected. Although generally
unnecessary, you can use processRecentChanges to force an EOEditingContext
to decrement the snapshot reference count on those snapshots that are no longer
needed. EODatabase still holds strong references to row-level snapshots and
maintains a reference count for each row and its associated EOGlobalID object.

Undo Managers
Each EOEditingContext has an NSUndoManger. By default, that undo manager can
perform an unlimited number of undo and redo operations. You should consider
using removeAllActions at checkpoints beyond which you have no intention of
undoing (such at the end of a request).

Alternatively, you can limit the size of the undo stack using setLevelsOfUndo. If your
application is not going to use the undo manager (say for batch operations), you can
disable it entirely by invoking setUndoManger(null) on an EOEditingContext.

Currently, an NSUndoManager maintains a strong reference to the target and to the
arguments of every action. This differs from the Cocoa undo manager, which only
retains the arguments.

Generally, you do not need to be concerned with garbage collecting
NSUndoManager objects as they are typically collected with their associated
EOEditingContext. However, the NSDelayedCallbackCenter maintains a strong
reference to NSUndoManager objects until the current event is over. The
NSUndoManger in turn holds onto the EOEnterpriseObject arguments to the undo
operation, which in turn hold on to their EOEditingContexts).

This should not affect most WebObjects applications since the WebObjects
framework ends the event. However, some pure Enterprise Objects applications
may have need to explicitly invoke eventEnded on the NSDelayedCallbackCenter.
There is one such callback per thread that manipulates Enterprise Objects or
NSUndoManger code.

New in WebObjects 5.2, the default session editing context for WOSession strictly
limits undo operations by default. You can adjust this by invoking

 defaultEditingContext().undoManager().setLevelsOfUndo(<integer>);

C H A P T E R 1

What’s New in WebObjects 5.2

Enterprise Objects 17
  Apple Computer, Inc. November 2002

You can also adjust this by setting the WebObjects property
WODefaultUndoStackLimit. This property affects only the default editing context for
WOSession objects. Its default value is 10. As with Enterprise Objects applications,
you can disable the undo manager by setting it to null. Remember that sessions do
not create the default editing context until the first invocation of
defaultEditingContext.

Finally, the component page cache and the session timeout are good starting points
for controlling memory use in WebObjects. See the WOApplication methods
setPageCacheSize and setSessionTimeOut .

Concurrency and Locking
This section discusses general locking requirements in Enterprise Objects, changes
made in WebObjects 5.2, and concurrency within Enterprise Objects. It provides
information on achieving concurrent database access with Enterprise Objects.

WebObjects first supported multithreading operations in version 4.0.
EOSharedEditingContexts were introduced in version 4.5. A significant amount of
API predates both these features. You can see the Apple references 2861512 and
2948731 in the release notes for more details on specific deadlocks.

In previous versions of Enterprise Objects, developers were expected to explicitly
lock and unlock EOEditingContexts, but most other objects locked themselves in
any methods that changed state (most of them) or did not support locking.

However these objects, mostly EOObjectStores and fault handlers confined in the
EOAccess layer, had no way of knowing the context of their usage. The breadth of
the Enterprise Object API allowed them to be used in many different ways at many
different times. Faults can be fired in many different scenarios. Consequently,
these objects needed to lock and unlock frequently. This has undesirable
performance characteristics.

Imagine an EOEditingContext fetches a thousand rows from a database. The
EODatabaseContext initializeObject method is invoked once per row to create a
corresponding EOEnterpriseObject. Since the EODatabaseContext can only service
one EOEditingContext at a time, nearly all of those locking operations are
redundant.

18 Enterprise Objects
  Apple Computer, Inc. November 2002

C H A P T E R 1

What’s New in WebObjects 5.2

Worse, if another thread were to seize the lock while the first was still initializing
EOEnterpriseObjects, each thread could end up with some but not all of the
Enterprise Objects locks and all threads would be unable to continue. The
possibility of this deadlock occurring was alleviated in WebObjects 4.0 by simply
having one global lock for the entire EOAccess layer.

However, the introduction of EOSharedEditingContexts added an additional lock
to the scenario. EOSharedEditingContexts have a multireader, single-writer lock.
The writer lock behaves similarly to a plain EOEditingContext’s lock, but the
EODatabaseContext in the example above must also prevent other threads from
acquiring the read lock while it has the global EOAccess lock. This was temporarily
remedied in WebObjects 5.1.3 by replacing all EOSharedEditingContexts
reader-writer locks with the global EOAccess lock.

The entire concurrency architecture has been updated in WebObjects 5.2 within the
constraints of the existing Enterprise Objects API. In this paradigm, each lock is
treated as a shared resource. To ensure safe concurrent access to Enterprise Objects, it is
your fundamental responsibility is to lock the Enterprise Objects you use directly. The
Enterprise Objects will then lock any additional resources they use directly as
needed. You should assume that instances of classes that do not implement
NSLocking are not suitable for concurrent access without additional steps
being taken.

For example, EOEnterpriseObjects do not implement NSLocking and Enterprise
Objects assumes they will be used only by the thread that has locked their
EOEditingContext. Since it very rarely makes any sense to provide concurrent
access to EOEnterpriseObjects separately from their EOEditingContexts, it
shouldn’t be a problem that EOEnterpriseObjects do not implement NSLocking.

The only exception is that you do not need to lock EOSharedEditingContexts.
Enterprise Objects will always ensure safe access to shared editing contexts. In fact,
explicitly locking EOSharedEditingContexts is discouraged, as it is difficult to
perform correctly. Similarly, overriding the provided implementations of lock and
unlock on concrete Enterprise Objects classes should be approached with extreme
caution.

Now, EOEditingContexts automatically lock their parent object stores when they
perform operations requiring access to those object stores. In the example above,
the editing context locks its parent object store once for the fetch, rendering it
unnecessary to lock and unlock in each initializeObject method call.

C H A P T E R 1

What’s New in WebObjects 5.2

Enterprise Objects 19
  Apple Computer, Inc. November 2002

EOObjectStore and EOObjectStoreCoordinator now implement NSLocking and
require the implementation of the lock and unlock methods. The global EOAccess
lock has been eliminated. EOAccess objects can only be used by the thread that has
locked the EOObjectStoreCoordinator containing the corresponding
EODatabaseContext. Essentially, the EOObjectStoreCoordinator now replaces the
global EOAccess lock.

In previous versions of WebObjects, EOAccess objects, like EODatabaseContext,
locked themselves in response to any method invocation. This is no longer true, and
if you directly manipulate EOAccess-level objects, you should first secure the lock
for the associated EOObjectStoreCoordinator.

When an EOEditingContext locks its parent object store, it first obtains the writer
lock for its EOSharedEditingContext, if one exists. It does not release the writer lock
until it is finished using the EOObjectStore. Obtaining the lock for an
EOObjectStoreCoordinator causes that coordinator to first lock all of its registered
cooperating object stores.

You usually interact only with the EOEditingContext lock. It is vital to properly
lock and unlock EOEditingContexts because no Java application is truly single
threaded. The garbage collector runs in a separate system thread, which is
responsible for cleaning up weak references to EOEnterpriseObjects. And the code
for finalize methods runs in yet another system thread on most platforms.

An invalidateAllObjects message propagates to every EOEditingContext in the
application. If you use an unlocked EOEditingContext when another thread
invalidates something, your EOEnterpriseObjects will be forcefully turned into
empty faults in the EOEditingContext you are working with during your operation.
The most favorable outcome of this scenario is that your application loses your
outstanding changes.

Because of its performance impact, invalidateAllObjects should be used only
when absolutely necessary. If you use invalidateAllObjects to ensure the freshness
of enterprise objects, you should instead consider using the method
setFetchTimestamp on EOEditingContext. Using this method along with
refaultAllObjects or refreshAllObjects is the recommended way to update
the enterprise object instances in a particular editing context.

20 Enterprise Objects
  Apple Computer, Inc. November 2002

C H A P T E R 1

What’s New in WebObjects 5.2

You must unlock any locks you take regardless of the circumstances (except total
virtual machine failure). Leaving locks in place after a nonfatal exception will
eventually deadlock the application. You can use finally blocks to achieve this
requirement. Locked EOEditingContexts can still be garbage collected, so
removing references to EOEditingContexts can also be used.

In general, code should first secure the appropriate EOObjectStoreCoordinators’
locks before posting notifications that Enterprise Objects objects register to receive.
Delegates do not need to worry about locking unless they attempt to access
additional resources.

Enterprise Objects uses more sophisticated locking objects than those built in to Java
to provide both itself and you more control over the scope of a critical region. This
reduces contention and the possible scenarios that can generate deadlock.

Notable locks in Enterprise Objects include the EOEditingContext’s lock. Child or
nested EOEditingContexts use their parent’s lock. EOSharedEditingContexts have
a multireader, single-writer lock. Each EOObjectStore may have its own lock, as
does each EOObjectStoreCoordinator. There is also a global lock for loading
EOModels.

Problems with locking can be addressed by using NSLog. Set the debug level to at
least DebugLevelInformational and the debug groups to include
DebugGroupMultithreading. In the event of apparent deadlock, you can obtain a
complete stack trace of all the threads within the Java Virtual Machine by sending
the java process the QUIT signal. You can do this on the command line with kill -3
pid or Control \, although these commands vary by Java platform.

Concurrent Database Operations
The changes to the locking and synchronization architecture in Enterprise Objects
now permit concurrent database access from within Enterprise Objects. In practical
terms, each EOObjectStoreCoordinator represents a single database connection to
each of the registered EOCooperatingObjectStores. EOEditingContexts that share
an EOObjectStoreCoordinator share a single database connection.
EOEditingContexts with different EOObjectStoreCoordinators can perform
concurrent operations, such as fetching from the database. To configure each
editing context to use a different object store coordinator, use this code:

C H A P T E R 1

What’s New in WebObjects 5.2

Enterprise Objects 21
  Apple Computer, Inc. November 2002

EOObjectStoreCoordinator parent = new EOObjectStoreCoordinator();
EOEditingContext ec = new EOEditingContext(parent);

The different EOObjectStoreCoordinators will have different EODatabaseContexts,
and entirely separate row level snapshots. This can impact an application’s
memory footprint, as well as have optimistic locking consequences. Since the
results of raw row operations are not cached, either raw row fetches or raw SQL
operations are well suited to concurrent database access. The EOUtilities class in
the access layer provides a variety of convenience methods for executing these
tasks. EOFetchSpecification also supports setFetchesRawRows on fetch
specifications.

Nothing prevents different WOSessions from having concurrent database access. It
is simply easier to balance the attendant resource costs with raw row work.
Customers can use the setDefaultEditingContext method on WOSession to
establish an EOEditingContext with a particular EOObjectStoreCoordinator. The
setDefaultEditingContext method must be invoked before a session ever refers to
its defaultEditingContext. For example, one could create a pool of
EOObjectStoreCoordinators, and in the session’s constructor grab one in a round
robin order. Applications with few simultaneous users may be able to afford to
simply create a new EOObjectStoreCoordinator for each session.

EOCustomObject Relationship Methods
EOCustomObject includes new methods for handling relationships. They are
intended to clean up the code for manipulating to-many relationships. Before these
new methods, enterprise object classes had to declare instance variables and
method arguments for to-many relationships as NSMutableArray objects.
However, an immutable NSArray is more appropriate.

The new methods are

includeObjectIntoPropertyWithKey(Object, String)
excludeObjectFromPropertyWithKey(Object, String)

You use these methods within the addToKey and the removeFromKey methods.
EOModeler now uses these methods when it generates Java class files for enterprise
objects that have to-many relationships.

22 Java Client
  Apple Computer, Inc. November 2002

C H A P T E R 1

What’s New in WebObjects 5.2

Java Client

The Java Client technologies in WebObjects 5.2 have received many enhancements
and new features, as well as important bug fixes. Many common customer requests
have been integrated into this release, the architecture was cleaned up to be more
flexible, and performance was tuned in several areas.

Unfortunately several of the changes that were implemented required API changes
and thus Java Client in WebObjects 5.2 is not binary or source compatible with earlier
versions (including WebObjects 5.1). Existing Java Client applications will have to be
converted manually when moving to WebObjects 5.2. Depending on the complexity
of your applications, conversion should take between a few hours and 2 or 3
engineering days. Most conversion steps are text replacements in your source code
and should be very straightforward; the vast majority of applications can be
converted in less than a day.

See “Conversion Guide” (page 33) to learn how to convert existing projects. Many
changes have been made to the XML controller tags. The appendix in Inside
WebObjects: Java Client Desktop Applications reflects these changes.

Web Start
As of WebObjects 5.2, applet support in Java Client is deprecated and replaced with
support for Web Start. Web Start is a much better fit for Java Client and avoids the
problems created by applets running in browsers. The JNLP information for your
applications is generated dynamically by WebObjects, so you don't have to write a
JNLP file by hand. In addition to Web Start, you can still generate complete
applications to be installed on client computers in the traditional way (see the
JavaClientLauncher example for more details).

Instead of a single component with a WOJavaClientApplet (typically the Main
component), you now use two components in your applications: an entry page
(typically the Main component), which contains the JNLP link to start the
application, and a configuration page (typically called JavaClient) with the new
WOJavaClientComponent to specify the details of the client application

C H A P T E R 1

What’s New in WebObjects 5.2

Java Client 23
  Apple Computer, Inc. November 2002

(application class, Web Start parameters, and so forth). The JNLP link actually
points to a special URL that returns the JNLP dynamically, based on the information
in your WOJavaClientComponent.

WOJavaClientComponent has many bindings you already know from
WOJavaClientApplet, but also some new bindings related to Web Start (to specify
the application name, vendor, etc.). See the API reference for
WOJavaClientComponent for details.

Because of Web Start, the wojavaclient.jar file usually used to distribute the Java
Client client classes is now signed. That means that if you have existing applications
that repackage the wojavaclient.jar into another JAR file, you will get exceptions.
Instead, use the individual JAR files in WebServerResources/Java of the following
frameworks (wojavaclient.jar simply merges all these JAR files together):
JavaEOApplication, JavaEOControl, JavaEODistribution, JavaEOGeneration,
JavaEOInterface, JavaEOInterfaceSwing, JavaEORuleSystem, JavaFoundation,
and JavaXML.

Architectural Enhancements
Before WebObjects 5.2, the desktop application side of the Java Client architecture
was strictly dependent on the distribution layer. In this release, you have a lot more
flexibility in how you start the application and how you connect to the server
application. You can now use the interface, application, and generation layers in a
more flexible way–for example in two-tier and three-tier architectures.

The rule system was separated from the generation layer and moved out of the
JavaEOGeneration framework into a standalone framework, JavaEORuleSystem.
Distribution layer–dependent functionality in the application and generation layer
was made pluggable. In greater detail:

� ApplicationSupport is a new inner class in EOApplication. An application
support object is used by the EOApplication instance to handle
architecture-specific tasks (like connecting to a server in a three-tier
environment). Depending on your needs, you can choose from different
subclasses of EOApplication.ApplicationSupport. The main method has been
removed from EOApplication and instead you now use a main method on the
application support class you wish to use.

24 Java Client
  Apple Computer, Inc. November 2002

C H A P T E R 1

What’s New in WebObjects 5.2

With three-tier Java Client applications you use the
com.webobjects.eoapplication.client.EOClientApplicationSupport class,
with two-tier applications you use the
com.webobjects.eoapplication.EOApplicationSupport class. The method
signature for EOApplication.startApplication() has changed to reflect
these changes.

� The application and generation layers now use the EODataSourceFactory class
to create data sources. It's the task of the application support object to set the
default data source factory according to their needs.

� The com.webobjects.eoapplication.EODefaultResourceBundle class was
renamed to com.webobjects.eoapplication.client.EOClientResourceBundle
(and is still used in three-tier architectures on the client side). In two-tier
architectures you can use the new class
com.webobjects.eoapplication.EOResourceBundle.

� The class com.webobjects.eoapplication.EODefaults was redesigned
to be an abstract class with concrete subclasses
com.webobjects.eoappliation.client.EORemoteStoreageDefaults for the
client side in three-tier applications (former EODefaults) and
com.webobjects.eoapplication.EOUserFileDefaults for two-tier applications.
The method signatures for loadPersistentValues and savePersistentValues on
EODefaults changed and these methods are abstract now. A method allValues
was added to EODefaults. The notification names
LoadUserDefaultsNotification and SaveUserDefaultsNotification and
the key DefaultsKey were moved from
com.webobjects.eodistribution.EODistributionContext
to com.webobjects.eoapplication.EODefaults.

� The method sessionDidTimeOut on EOApplication has been removed, as this
kind of functionality is now handled internally by EOClientApplicationSupport.
EOApplication has a new method, quitWithMessage , which is used by the
support implementation.

To configure different architectural needs you use the application support class and
so-called principal classes. Principal classes can be specified per bundle (application
or framework). For the second tier (typically a WebObjects application), you use the
NSPrincipalClass setting; for the third tier (client side in Java Client) there is a new
an NSClientPrincipalClass setting, which you simply add in Project Builder's
Expert View for the Info.plist Entries of your project (CustomInfo.plist
on Windows).

C H A P T E R 1

What’s New in WebObjects 5.2

Java Client 25
  Apple Computer, Inc. November 2002

All frameworks now provide classes for the server side (or two-tier applications)
and client side (three-tier applications). The classes for two-tier applications are
found in the Resources/Java directory of the frameworks; the classes for the client
side of three-tier applications are found in the WebServerResources/Java directory of
the frameworks.

We renamed the packages for most Java Client classes: Classes that are useful in
both two-tier and three-tier architectures are now in the packages
com.webobjects.eoapplication and com.webobjects.eogeneration. Some additional
classes that are specific to the client side of Java Client applications are available in
the com.webobjects.eoapplication.client package (and are only part of
JavaEOApplication.framework/WebServerResources/Java). The rule system–specific
classes (formerly com.webobjects.eogeneration) are now in the package
com.webobjects.eogeneration.rules.

New Controllers
There are a few new controller/association classes to complete the functionality
offered by Java Client:

� EOTreeController/EOTreeAssociation: These classes add support for JTree.
There is a new association class in the interface layer (which you can set up
programmatically) and a new controller in the generation layer if you want
to use tree views with Direct to Java Client.

� EOSplitController: A new user interface controller to generate and control
horizontal and vertical split views. Split controllers need exactly two
subcontrollers (since JSplitPane works only with exactly two components).
It will throw an exception if you add more.

� EODisplayStatisticsController: A new simple controller to display the number
of visible and selected objects in lists, used typically in query windows and
to-many relationship editors.

� EODetailSelectionController: A controller using the
EODetailSelectionAssociation to allow modifying and displaying relationships
directly with the selection in a table view.

� EOActionTrigger: A new controller generating buttons for actions (typically
invoked on a supercontroller).

26 Java Client
  Apple Computer, Inc. November 2002

C H A P T E R 1

What’s New in WebObjects 5.2

EOTreeController and EODetailSelectionController are accessible in the Assistant
(widget-type pop-up in the Widgets view if you select the form task),
EOSplitControllers can be chosen through the layout hints, and
EODisplayStatisticsControllers will be automatically inserted by the rule system
when it makes sense. For EOActionTriggers, you need to specify the actions to be
displayed. Typically you use them to invoke actions on supercontrollers. Since
those can't be configured in the Assistant, you usually insert them manually in
frozen XML.

Dynamic Layout
The dynamic user-interface generation with Direct to Java Client was fairly limited
in the past. WebObjects 5.2 includes a variety of enhancements that should make the
generated user interfaces more useful and easier to customize, thereby reducing the
need to freeze XML for controller hierarchies.

Most importantly, the rule system now offers a way to specify layout hints and
levels to change the layout of widgets. These can be specified in the Widgets view
of the Assistant. These are the layout hints you can specify:

� Columns: Components are placed underneath each other (top to bottom), in
multiple columns if there are many.

� Row: Components are placed side by side (left to right).

� FullWidth: Components are placed underneath each other, each of them
covering the full width of the window.

� Box: Components are placed in a (titled) box.

� Switch: Components are placed in a switch view (typically a tab view).

� Subwindow: Components are placed in a subwindow, with an activation button
in the main window.

� Inspector: Components are placed in an inspector window (shared by windows
of the same type), with an activation button in the main window.

� VerticalSplit: Components are placed in a vertical split view.

� HorizontalSplit: Components are placed in a horizontal split view.

C H A P T E R 1

What’s New in WebObjects 5.2

Java Client 27
  Apple Computer, Inc. November 2002

The layout level is a number from 1 through 9. The rule system generates the layout
level after level and with the order of the layout hints as listed above. So at the top
of the window you will see the properties for which you specified a layout level 1
and a layout hint Columns, then the properties with the level 1 and hint Row, then
level 1/hint FullWidth, ..., level 1/hint HorizontalSplit, level 2/hint Columns, level
2/hint Row, ..., level 2/hint HorizontalSplit, level 3/hint Columns, and so on.

In addition to the new layout hints and levels in the rule system, there are several
bug fixes in the dynamic view layout (especially related to label alignment). You can
now set the resizing behavior for individual components within a window; the
components in a particular window can now have a different resizing behavior than
the window or than other components in that window. So for example if you add
two text areas to the same window, they both resize now (while before only the first
one resized).

Large widgets (text areas, QuickTime views, and so forth) are now placed in switch
views by default.

To create nicer modal dialogs, the Center option of the widgetPosition attribute has
a different effect: With that option, the Cancel and OK buttons don't appear as large
toolbar butttons at the top of the window, but as small text buttons at the bottom
right.

And to integrate better with the Aqua human interface of Mac OS X, we now track
more layout parameters in EOUserInterfaceParameters. You can even request the
user interface to be optimized for Mac OS X by invoking
EOUserInterfaceParameters.optimizeForMac (which only has an effect if actually
running on Mac OS X). In that mode the generated user interface will be
significantly larger and might not be useful for applications with complex models.

Actions
The method activatePreviousWindow on EOApplication was removed (use the
identical EOWindowObserver method instead). The method
standardActivatePreviousWindowActionForApplication on EOAction was renamed
to standardActivatePreviousWindowActionForWindowObserver. This action is now
dispatched directly to the window observer, not to the application object.

We added a new dispatching mechanism: The new method
actionForSupercontrollers on EOAction sends actions to the first controller
implementing the corresponding action method it finds going up the

28 Java Client
  Apple Computer, Inc. November 2002

C H A P T E R 1

What’s New in WebObjects 5.2

controller hierarchy. The SUPERCONTROLLERSACTION tag can be used to specify these
kind of actions in XML. These kind of actions are very useful with EOActionTrigger
controllers.

Also, we added a way to specify additional actions for all controllers in XML
(methods setAdditionalActions/additionalActions on EOController, XML
attribute actions). Example:

<ACTIONTRIGGER>
 <ARRAY name="actions">
 <SUPERCONTROLLERSACTION actionName="invokeSomething"
 descriptionPath="Edit/Do Something"
 categoryPriority="110" actionPriority="1000"/>
 </ARRAY>
</ACTIONTRIGGER>

Titles and Enumeration Controllers
We implemented significant enhancements to the EOTitlesController and
EOMultipleValueEnumerationController classes to give you much more control
over which values are displayed and which values can be selected. On
EOTitlesController:

� Usually titles controllers fetch all objects of the destination entity and display
them as available choices. Instead of fetching them explicitly, you can ask the
controllers now to look for objects in the editing context (methods
setSearchesTitlesObjectsInEditingContext/
searchesTitlesObjectsInEditingContext, XML attribute
searchesTitlesObjectsInEditingContext). So instead of fetching objects, they
search for all objects of the destination entity currently registered in the editing
context and display only the ones they found. You usually take care of fetching
these objects in a supercontroller of your own custom class.

� Alternatively you can specify an availableTitlesKey (methods
setAvailableTitlesKey/availableTitlesKey, XML attribute
availableTitlesKey). This key represents a key path relative to the master object
and has to return the array of available objects the user can choose from. This
way the business objects themselves can provide the information about
available choices.

C H A P T E R 1

What’s New in WebObjects 5.2

Java Client 29
  Apple Computer, Inc. November 2002

On EOMultipleValueEnumerationController:

� You can now specify whether the user can remove all choices or whether at least
one object should be chosen all the time (methods setAllowsRemoveAll)/
allowsRemoveAll, XML attribute allowsRemoveAll).

� You can now specify whether the user can add duplicates or not (choose the
same object twice, methods setAllowsDuplicates/allowsDuplicates, XML
attribute allowsDuplicates).

� To support sorting of the chosen objects, you can now specify an index key
(methods setIndexKey/indexKey, XML attribute indexKey). If you specify an
index key, the user will be presented with buttons to move objects up and down
and the index key attribute of all selected objects will be modified to represent
that order (starting with 0).

� You can also specify separate display keys for selected and available objects
(methods setDetailKeys/detailKeys/addDetailKey/removeDetailKey, XML
attribute detailKeys) in addition to the usual title keys. That way you can
display different information in the tables for chosen and available objects).

� And you can now specify a detail relationship path (methods
setDetailRelationshipPath/detailRelationshipPath, XML attribute
detailRelationshipPath). If you do, the selected objects are considered to be in a
master-detail relationship and the normal relationship path is considered
relative to the detail objects.

All of these keys need to be specified in rules written in Rule Editor or frozen XML;
they are not configurable from the Assistant.

Locales, Languages, Platforms
We cleaned up the way localization and platform-specific customization is handled:
While the method EOApplication.languages() still exists, we introduced the new
methods locales and localeIndicators to handle localization in a more detailed
way. We also added a method platformIndicators to identify the platform the
application is executed on.

The key LanguagesSpecification on EOControllerFactory was renamed to
LocalesSpecification and can be used to access the client's locale indicators (not
just languages) in the rule system of Direct to Java Client (which runs on the
server side).

30 Java Client
  Apple Computer, Inc. November 2002

C H A P T E R 1

What’s New in WebObjects 5.2

Other Enhancements
Without specific order, here is a list of smaller enhancements and changes we
implemented in addition to the ones already listed:

� We redesigned the EODocument functionality a little bit: EODocuments were a
little inflexible and had to deal with editing contexts and display groups. We
renamed the com.webobjects.eoapplication.EODocument interface
to com.webobjects.eoapplication.EOObjectDisplayDocument. The
com.webobjects.eoapplication.EODocument interface still exists but is not
dependent on EOObjectDisplay any more (EOObjectDisplayDocument is, it's an
interface that combines EODocument and EOObjectDisplay). EOApplication’s
document API works with EODocument, not with EOObjectDisplayDocument.

� EOEntityController was split into two classes: EOArchiveController
and EOEntityController. EOArchiveController is a subset of the previous
EOEntityController class. It is used to load interface files and to handle
controller display groups and might provide a better subclassing point for your
own customizations.

� The methods setAlignmentWidth and alignmentWidth were moved from
EOComponentController down the class hierarchy to EOWidgetController and
renamed to setLabelComponentWidth and labelComponentWidth. The XML
attribute alignmentWidth was renamed to labelComponentWidth. These methods
did not make sense in a high-level class such as EOComponentController.

� We added a way to directly affect the size of widgets from EOWidgetControllers
(methods setMinimumWidgetSize/minimumWidgetSize, XML attributes
minimumWidgetWidth and minimumWidgetHeight). Previously, you could affect the
size of only the complete component generated (which contains other
components); now you have more control over widget sizes.

� Windows menu: EOWindowObserver now maintains menu items for all open
windows and adds more standard menu items in the Windows menu.

� We removed the method collectChangesFromServer from EOInterfaceController
(it was already deprecated in WebObjects 5.1) and renamed
collectChangesFromServer on EOApplication to refreshData.

� We removed the method loadArchiveNamed(String, Object, String) from
EOArchive (it was already deprecated in WebObjects 5.1).

� Provider method names (for display groups, editing contexts, etc.) can now be
specified in three different ways:

C H A P T E R 1

What’s New in WebObjects 5.2

Java Client 31
  Apple Computer, Inc. November 2002

� className:staticMethodName (a static method on a class)

� keyPath (a key path on the controller for which the provider method name is
specified)

� ^keyPath (a key path on the controller for which the provider method name
is specified or the closest supercontroller)

� EOTextFieldController has a new option to use a JPasswordField instead of the
regular text field (methods setUsesPasswordField/usesPasswordField, XML
attribute usesPasswordField).

� We added support for help tags (tool tips) on all EOComponentControllers and
EOActions (methods setToolTip/toolTip, XML attribute toolTip).

� Notifications sent by EOApplication: We cleaned up the notification names
(ApplicationDidStart is now ApplicationDidStartNotification and
ApplicationWillQuit is now ApplicationWillQuitNotification) and introduced
two new notifications to give you finer grained control over the start sequence:

� ApplicationWillStartNotification (sent before the main launch sequence is
executed, but after principal classes are warmed up, so principal classes can
register for this notification)

� ApplicationWillFinishInitializationNotification (sent right at the
beginning of the finishInitialization method on EOApplication).

� The rule system now identifies abstract entities and no longer considers them
main entities.

� The default rule system now provides list windows for all main entities (no
actions that activate them are generated by default, but the LISTACTION XML tag
and the com.webobjects.eogeneration.rules.EOListAction class (with
EOListAction.wo) component can be used to create some). Several new methods
on EOControllerFactory support this new functionality (canListWithEntityName,
listWithEntityName, listFetchSpecificationWithEntityName,
listGlobalIDsWithEntityName). Also, the method setObjectsWithGlobalIDs was
added to EOEntityController.

� The interface layer does not expect an EOEnterpriseObject any more for most
common operations (only associations performing relationship manipulations
still expect EOEnterpriseObject). This way you can place nearly arbitrary objects
in display groups and they are simply accessed through
NSKeyValueCodingAdditions (or NSKeyValueCodingAdditions.
DefaultImplementation). Some method signatures have changed to fix this issue
(for example valueForObject on EODisplayGroup).

32 Java Client
  Apple Computer, Inc. November 2002

C H A P T E R 1

What’s New in WebObjects 5.2

� We added, renamed, or removed constants on EOXMLUnarchiver (too many to
list here in a detailed form). It should be trivial for you to find a replacement (or
create your own constant if necessary).

� Changes to EOUserInterfaceParameters:

� Methods setLabelDistance and labelDistance were added. The value is used
to determine the distance in points between label components and widgets.

� Method setBorders, which took three arguments, was replaced with the
three methods setSmallBorder, setMediumBorder, and setLargeBorder, each
taking one single argument.

� Methods setAllowIcons and allowIcons were removed (they were already
deprecated in WebObjects 5.1).

� We added an XML attribute, transient , that can be used to prevent any
controller from becoming transient if set to false (but if set to true it will not
force the controller to become transient).

� We added support for continuous change notification on
EOAssociationController (methods setPrefersContinuousChangeNotification/
prefersContinuousChangeNotification, XML attribute
prefersContinuousChangeNotification), which results in edited business objects
changing immediately when the user enters values (as long as the association
class used by the controller supports continuous change notification). Note that
continuous change notification can be problematic if you use validation
methods on your business objects.

� Sometimes you want to create user interfaces with the help of widget and
association controllers, but the data to be displayed or entered is not stored in
your database and thus is not represented in your EOModel (for example a
name and password field in a log-in window). Up to WebObjects 5.1, you were
not able to use the regular generation-layer controllers for that since they always
tried to create an association and actually raised an explicit exception if they
could not establish one. In WebObjects 5.2, you can control this behavior a little
better with the methods setSuppressesAssociation/suppressesAssociation
(XML attribute suppressesAssociation), which were added to
EOAssociationController. You can access the widget of the controllers directly to
set and get values.

C H A P T E R 1

What’s New in WebObjects 5.2

Java Client 33
  Apple Computer, Inc. November 2002

Conversion Guide
To convert Java Client and Direct to Java Client projects from WebObjects 5.1 to
WebObjects 5.2, follow these steps:

1. Add JavaEORuleSystem.framework to all Direct to Java Client projects.

2. Rename packages (replace text in this order searching on whole orders;
otherwise you will not be able to distinguish between the generation and rule
system layer packages any more):

com.webobjects.eogeneration -> com.webobjects.eogeneration.rules
com.webobjects.eogeneration.client -> com.webobjects.eogeneration

3. Add import statement to all source files importing
com.webobjects.eoapplication:

import com.webobjects.eoapplication.client.*;

4. Update user interface files in Interface Builder:

� Update the File’s Owner classes of all frozen interface files for Direct to Java
Client applications (which do not use an interface controller class but one of
the former com.webobjects.eogeneration.client classes as File’s Owner) to
use a class from the new com.webobjects.eogeneration package.

� Save all interface files explicitly in Interface Builder to update the archive
information (on both Mac OS X and Windows), independent of whether they
are used in a Direct to Java Client or a traditional Java Client application with
interface controllers.

5. Update WebObjects components:

� Recommended: Update all pages using WOJavaClientApplet to use the new
Web Start mechanism (WOJavaClientComponent). You will need to split up
your components in two parts, one that represents an HTML entry page with
a JNLP link and one with the WOJavaClientComponent. To see how this is
done, simply create a new Java Client or Direct to Java Client project in
Project Builder (and note that there is a method on the Main.java class that
you need).

� If applet support is still needed and the code binding was used to specify
an applet class explicitly and that applet class was
com.webobjects.eoapplication.EOApplet, change the value of the
binding to com.webobjects.eoapplication.client.EOApplet.

34 Java Client
  Apple Computer, Inc. November 2002

C H A P T E R 1

What’s New in WebObjects 5.2

6. Update string constants (if you used the former EODistributionContext
constants, you will probably have to add an import statement for
com.webobjects.eoapplication.* to your source code):

� EOApplication.ApplicationDidStart ->
EOApplication.ApplicationDidStartNotification

� EOApplication.ApplicationWillQuit ->
EOApplication.ApplicationWillQuitNotification

� EOControllerFactory.LanguagesSpecification ->
EOControllerFactory.LocalesSpecification

� EODistributionContext.LoadUserDefaultsNotification ->
EODefaults.LoadUserDefaultsNotification

� EODistributionContext.SaveUserDefaultsNotification ->
EODefaults.SaveUserDefaultsNotification

� EODistributionContext.DefaultsKey -> EODefaults.DefaultsKey

7. Update class names:

� EODefaults -> EORemoteStorageDefaults

� EODefaultResourceBundle -> EOClientResourceBundle

� EODocument -> EOObjectDisplayDocument

8. Update method names:

� standardActivatePreviousWindowActionForApplication ->
standardActivatePreviousWindowActionForWindowObserver (EOAction)

� collectChangesFromServer -> refreshData (EOApplication)

� setAlignmentWidth -> setLabelComponentWidth (EOWidgetController)

� alignmentWidth -> labelComponentWidth (EOWidgetController)

� setBorders -> setSmallBorder/setMediumBorder/setLargeBorders (
EOUserInterfaceParameters)

9. Remove method invocations:

� The methods setAlignmentWidth and alignmentWidth were moved from
EOComponentController down the class hierarchy to EOWidgetController
(and renamed to setLabelComponentWidth and labelComponentWidth). You can
safely remove invocations of these methods to nonwidget controllers (they
had no effect when invoked on nonwidget controllers anyway).

C H A P T E R 1

What’s New in WebObjects 5.2

Java Client 35
  Apple Computer, Inc. November 2002

� The methods setAllowIcons and allowIcons were removed from
EOUserInterfaceParameters. You can safely remove invocations of these
methods (they had no effect anyway).

10. Find alternative method invocations for methods that were removed:

� The method activatePreviousWindow on EOApplication was removed.
Invoke the identical method on the application's window observer instead.

� The method collectChangesFromServer on EOInterfaceController was
removed. Replace it with an invocation to refreshData on EOApplication.
Alternatively you can re-create the method on your EOInterfaceController
subclasses and invoke refreshData from inside.

� The method loadArchiveNamed(String, Object, String) on EOArchive was
removed. Replace it with an invocation to loadArchiveNamed(String, Object,
String, NSDisposableRegistry) and catch exceptions thrown by this method to
find out whether loading the archive was successful.

� The method sessionDidTimeOut on EOApplication was removed. The
functionality is now handled by EOClientApplicationSupport, which
invokes EOApplication's quitWithMessage in case of a session timeout.

11. Update rule system for Direct to Java Client applications:

� If you wrote rules using the languages key to get localization information
from the D2WContext, update them to use the locales key instead.

� By default, abstract entities will not show up as main entities any more.
Check the main entities in the Assistant to see whether the desired entities
are still selected.

� By default, EOActionButtonControllers in modal dialogs will now use the
Center option for widgetPosition. If this is not desired, create a rule to use the
Top option instead (or edit your frozen XML).

� By default, the rule system now integrates EODisplayStatisticsControllers in
most windows. If this is not desired, create a rule with the key
displayStatistics and the value false.

� By default, large views like text areas and QuickTime views are now placed
in switch views. If this is not desired, bring up the affected entities and
properties in the Widget editor of the Assistant and change the layout hint
(probably to FullWidth or Columns).

36 Java Client
  Apple Computer, Inc. November 2002

C H A P T E R 1

What’s New in WebObjects 5.2

� With the changes to the dynamic widget layout mechanisms, more
components end up (partially) resizable. If this is not desired, bring up the
affected entities and properties in the Widget editor of the Assistant and set
the horizontally or vertically resizable flags (or both) to false (or edit your
frozen XML).

� By default, more controllers now become transient (especially query widget
controllers in the query window). If you need to access these controllers
explicitly, create a rule to set transient to false for these controllers (or edit
your frozen XML and add an attribute transient="false" to the controllers
you need).

� The XML attribute alignmentWidth for widget controllers was renamed to
labelComponentWidth. If you used that key in a rule or in frozen XML,
change it.

12. Update defaults manager: If you use your own EODefaults subclass, note that
the method signatures of loadPersistentValues and savePersistentValues have
changed and update your subclass accordingly. See the API reference for
EODefaults for more details.

13. The launch sequence of applications has changed significantly. A lot of
functionality (and the main method) is now placed in the
com.webobjects.eoapplication.client.EOClientApplicationSupport class.

Applications that customized the launch sequence or dealt explicitly with
session timeouts or other three-tier related issues might have to be redesigned
to use a subclass of EOClientApplicationSupport.

14. If you have built applications that repackage the contents of the
wojavaclient.jar file into a different .jar file, use the individual .jar files in the
WebServerResources/Java directory of these frameworks: JavaEOApplication,
JavaEOControl, JavaEODistribution, JavaEOGeneration, JavaEOInterface,
JavaEOInterfaceSwing, JavaEORuleSystem, JavaFoundation, and JavaXML
instead.

	What’s New in WebObjects 5.2
	Contents
	What’s New in WebObjects 5.2
	Servlet Single Directory Deployment
	How It Works
	Project Builder Support
	Directory Layout
	web.xml
	Compatibility

	Launch Architecture
	WebObjects Extensions Directory
	Launch Scripts
	Servlet Deployments
	Project Builder Support

	Streaming File Uploads
	Basic Streaming
	formValues Method of WORequest
	WOFileUpload
	WOMultipartIterator Class
	Servlets
	Web Server Adaptors

	Enterprise Objects
	Memory Management
	Undo Managers
	Concurrency and Locking
	Concurrent Database Operations
	EOCustomObject Relationship Methods

	Java Client
	Web Start
	Architectural Enhancements
	New Controllers
	Dynamic Layout
	Actions
	Titles and Enumeration Controllers
	Locales, Languages, Platforms
	Other Enhancements
	Conversion Guide

