Inside WebObjects

Web Services

For WebObjects 5.2

«
Preliminary

November 2002

& Apple Computer, Inc.

©2001-2002 Apple Computer, Inc.
All rights reserved.

No part of this publication may be
reproduced, stored in a retrieval
system, or transmitted, in any form or
by any means, mechanical, electronic,
photocopying, recording, or
otherwise, without prior written
permission of Apple Computer, Inc.,
with the following exceptions: Any
person is hereby authorized to store
documentation on a single computer
for personal use only and to print
copies of documentation for personal
use provided that the documentation
contains Apple’s copyright notice.

The Apple logo is a trademark of
Apple Computer, Inc.

Use of the “keyboard” Apple logo
(Option-Shift-K) for commercial
purposes without the prior written
consent of Apple may constitute
trademark infringement and unfair
competition in violation of federal
and state laws.

No licenses, express or implied, are
granted with respect to any of the
technology described in this book.
Apple retains all intellectual property
rights associated with the technology
described in this book. This book is
intended to assist application
developers to develop applications
only for Apple-labeled or
Apple-licensed computers.

Every effort has been made to ensure
that the information in this document
is accurate. Apple is not responsible
for typographical errors.

Apple Computer, Inc.

1 Infinite Loop

Cupertino, CA 95014

408-996-1010

Apple, the Apple logo, Mac,
Macintosh, QuickTime, and
WebObjects are trademarks of
Apple Computer, Inc., registered in

the United States and other countries.

iPod is a trademark of
Apple Computer, Inc.

Enterprise Objects and trademark is a
of NeXT Software, Inc., registered in
the United States and other countries.

Java and all Java-based trademarks
are trademarks or registered
trademarks of Sun Microsystems, Inc.
in the United States and other
countries.

Simultaneously published in the
United States and Canada.

Even though Apple has reviewed this
manual, APPLE MAKES NO
WARRANTY OR REPRESENTATION,
EITHER EXPRESS OR IMPLIED, WITH
RESPECT TO THIS MANUAL, ITS
QUALITY, ACCURACY,
MERCHANTABILITY, OR FITNESS
FOR A PARTICULAR PURPOSE. AS A
RESULT, THIS MANUAL IS SOLD “AS
IS,” AND YOU, THE PURCHASER, ARE
ASSUMING THE ENTIRE RISK AS TO
ITS QUALITY AND ACCURACY.

IN NO EVENT WILL APPLE BE LIABLE
FOR DIRECT, INDIRECT, SPECIAL,
INCIDENTAL, OR CONSEQUENTIAL
DAMAGES RESULTING FROM ANY
DEFECT OR INACCURACY IN THIS
MANUAL, even if advised of the
possibility of such damages.

THEWARRANTY AND REMEDIES SET
FORTH ABOVE ARE EXCLUSIVE AND
IN LIEU OF ALL OTHERS, ORAL OR
WRITTEN, EXPRESS OR IMPLIED. No
Apple dealer, agent, or employee is
authorized to make any modification,
extension, or addition to this warranty.

Some states do not allow the exclusion or
limitation of implied warranties or
liability for incidental or consequential
damages, so the above limitation or
exclusion may not apply to you. This
warranty gives you specific legal rights,
and you may also have other rights which
vary from state to state.

Contents

Figures, Listings, and Tables 5

Chapter 1 About This Book 7
Chapter 2 Introduction to Web Services 9
What Are Web Services? 9
Web Service Discovery 10
Axis 11
Chapter 3 Web Service Essentials 13
Web Services and SOAP 14
Ingredients of a SOAP Message 14
Web Service Description 17
Chapter 4 Axis Basics 21
The Axis SOAP Engine 21
Serialization and Deserialization of Objects 23
Chapter 5 Developing Web Services 25

Providing a Calculator Web Service 25
Using the Calculator Web Service 26

Using Sessions 30

Adding Web Service Support to Existing Projects

Preliminary © Apple Computer, Inc. November 2002

35

Chapter 6

CONTENTS

Developing Direct to Web Services Applications

37

The Data Model 37

Creating the Project 39

Web Services Assistant 40

Adding a Custom Web Service 42

Adding an Operation 43

Testing an Operation 45

Using WODefaultWebService Operations 46
Observing SOAP Messages Using TCPMonitor 50
Freezing Operations 53

Unfreezing Operations 59

Dynamic Custom Operations 60

Preliminary © Apple Computer, Inc. November 2002

Figures, Listings, and Tables

Chapter3 \Web Service Essentials 13
Figure 3-1 Structure of a SOAP message 15
Figure 3-2 Organization of a WSDL document 19
Table 3-1 The elements of a SOAP message 16
Table 3-2 Attributes defined in the SOAP specification 17
Chapter 4 Axis Basics 21
Figure 4-1 The SOAP Message processing cycle 22
Figure 4-2 Web service processing—provider view 23
Figure 4-3 ~ Web service processing—consumer view 23
chapter5 Developing Web Services 25
Figure 5-1 A possible user interfact to the Calculator Web service ~ 30
Listing 5-1 Calculator.java class in Calculator project 25
Listing 5-2 CalculatorClient.java class in Calculator_Client project 26
Listing 5-3 Security_Client project—Application.java file 31
Listing 5-4 Security_Client project—SecurityClient.java file 32
chapter6 Developing Direct to Web Services Applications 37

Figure 6-1
Figure 6-2
Figure 6-3
Figure 6-4
Figure 6-5
Figure 6-6

Figure 6-7

Listing entity defined in the RealEstate data model 38
ListingAddress entity defined in the RealEstate data model 39
Connect dialog of Web Services Assistant 41

The Web Services Assistant main window 41

The New Operation dialog 43

The findHouseByAskingPrice operation of the HouseSearch Web
service 44

The test window of the findHouseByAskingPrice operation 46

Preliminary © Apple Computer, Inc. November 2002

FIGURES, LISTINGS, AND TABTLES

Figure 6-8
Figure 6-9

Listing 6-1
Listing 6-2

TCPMonitor window 53

The FindHouseByCity component—the frozen version of the
findHouseByCity operation 55

Properties file of the HousesForSale project 40

The WSDL document of the frozen findHouseByCity operation—the
HTML file of the FindHouseByCity component 55

Preliminary © Apple Computer, Inc. November 2002

CHAPTER 1

About This Book

This document studies example application projects to explain some of the concepts
it addresses. This projects and other companion resources can be found in /
Developer/Documentation/WebObjects/Web_Services/projects. Alternatively, you
can download them from http://developer.apple.com /techpubs/webobijects.

The following list itemizes resources you can use to increase your Web services
knowledge.

The AmazonClient project in /Developer/Examples/JavaliebObjects/
AmazonClient is an implementation of a client for Amazon.com Web services.

Building Web Services with Java: Making Sense of XML, SOAP, WSDL, and UDDI
(Sams) gives great detail on the elements of Web-service development and
deployment.

Architecting Web Services (Apress) provides a high-level view of Web-service
development.

Java & XML (O’Reilly) introduces you to XML and processing XML documents
using SAX (Simple API for XML).

Web Services Routing Protocol (WS-Routing) (http://msdn.microsoft.com/
library/en-us/dnglobspec/html/ws-routing.asp).

Axis (http://www.apache.org/axis).

Simple Object Access Protocol (SOAP) 1.1 (http:/ /www.w3.org/TR/2000/NOTE-
SOAP-20000508).

Canonical XML Version 1.0 (http://www.w3.org/TR/2000/CR-xml-c14n-
20001026).

Exclusive XML Canonicalization Version 1.0 (http://www.w3.org /TR /2001 /WS-
xml-exc-c¢14n-20011120).

Preliminary © Apple Computer, Inc. November 2002

http://msdn.microsoft.com/library/en-us/dnglobspec/html/ws-routing.asp
http://msdn.microsoft.com/library/en-us/dnglobspec/html/ws-routing.asp
http://www.apache.org/axis
http://www.w3.org/TR/2000/NOTE-SOAP-20000508
http://www.w3.org/TR/2000/NOTE-SOAP-20000508
http://www.w3.org/TR/2000/CR-xml-c14n-20001026
http://www.w3.org/TR/2000/CR-xml-c14n-20001026
http://www.w3.org/TR/2001/WS-xml-exc-c14n-20011120
http://www.w3.org/TR/2001/WS-xml-exc-c14n-20011120
http://developer.apple.com/techpubs/webobjects

CHAPTER 1

About This Book

m Web Services Description Language (1.1) (http:/ /www.w3.org/TR/wsdl).

In this document, SOAP (Simple Object Access Protocol) refers to SOAP version 1.1.

Preliminary © Apple Computer, Inc. November 2002

http://www.w3.org/TR/wsdl

CHAPTER 2

Introduction to Web Services

This chapter introduces Web-service concepts as well as Web-service development
in WebObjects.

What Are Web Services?

Web services provide an efficient way for applications to communicate with each
other. Currently, many companies use electronic-data-interchange (EDI) systems to
communicate with their business partners. EDI, however, requires the use of slow
modems and dedicated phone lines. Also, a change in the structure of the data
exchanged requires that the systems of all partners involved be updated. Web
services, which are based on Simple Object Access Protocol (SOAP) messages that
wrap Extensible Markup Language (XML) documents, provide a flexible
infrastructure that leverages the ubiquitous HTTP (or HTTPS) over TCP/IP. This
means that your organization probably has all the hardware and software
infrastructure needed to deploy Web services already. In addition, thanks to XML’s
structure and flexibility, each partner can extract only the information it needs from
a message, which gives participants a great deal of freedom.

But Web services provide more than an information-exchange system. When an
application implements some of its functionality using Web services, it becomes
more than the sum of its parts. For example, you can create a Web-service operation
that uses a Web-service operation from another provider to give its consumers (also
known as service requestors) information tailored to their needs. Web-service
operations are akin to the methods of a Java class; a provider is an entity that
publishes a Web service, while the entities that use the Web service are called
consumers.

What Are Web Services? 9
Preliminary © Apple Computer, Inc. November 2002

CHAPTER 2

Introduction to Web Services

Current Web service technology allows an organization to easily integrate its
systems, creating an enterprise-wide solution that leverages the work that is
performed best by smaller groups within the enterprise. For example, the Payroll
system is the one that should deal with an employee’s compensation, while the
Human Resources system is more appropriate for the management of vacation and
sick-leave time. However, an Employee Information system should gather the
information that both the Payroll and Human Resources systems contain, but
should not duplicate it. The Employee Information system could display a window
or Web page that an employee can view to analyze both her salary and accrued
vacation time, without having to directly access the databases used by the other two
systems. Payroll and vacation information would be available through Web service
operations provided by separate applications, which are tailored for their particular
objectives.

Web services can also be deployed over the Internet; however, you should ensure
that sensitive information is not compromised. A SOAP message can hop through
several computers across the Internet before reaching its destination, which exposes
it to be viewed and modified by malicious entities. There are several standards and
specifications that help you to protect the messages you send and to make sure that
the ones you receive have not been compromised. See “Web Service Security”
(page 29) for more information.

What Web services really provide is access to business logic. This business logic can
be implemented in any language. Most companies implementing Web services for
the first time will only add a Web-service front end to their existing applications.
WebObjects makes this easy.

Web Service Discovery

10

The Web Service Description Language (WSDL) is a specification used to describe
a Web service. This description allows an application to dynamically search for a
service, find out what operations it provides, and invoke the operations it needs. A
UDDI repository is a searchable directory of Web services that Web-service
requestors can use to search for Web services. However, a Web service need not be
published in a UDDI repository for an application to make use of it.

Web Service Discovery
Preliminary © Apple Computer, Inc. November 2002

Axis

CHAPTER 2

Introduction to Web Services

Axis is the third generation of Apache SOAP (an implementation of SOAP from the
Apache Software Foundation). Axis is a SOAP engine as well as a code generator
and WSDL processing tool. WebObjects uses Axis to both deploy and consume Web
services.

The idea behind Axis is to serve as a bridge between your time-tested code and the
world of Web services. By using Axis as its SOAP engine, WebObjects allows you
to leverage the business logic you have already created and use it as the backbone
of your Web services strategy.

Axis processes SOAP messages using a series of handlers, which are classes
responsible for processing a message or part of a message in a certain way. In fact,
you are free to add your own handlers to customize message processing. For more
information on Axis, visit http://xml.apache.org/axis.

Axis 11
Preliminary © Apple Computer, Inc. November 2002

http://xml.apache.org/axis

CHAPTER 2

Introduction to Web Services

12 Axis
Preliminary © Apple Computer, Inc. November 2002

CHAPTER 3

Web Service Essentials

You can think of Web services as distributed applications. Instead of instantiating
an instance of a class and invoking its methods, a Web-service consumer locates a
Web service and invokes the operations it provides. The Web-service provider (the
application implementing the Web service) can be on the same Java virtual machine
as the one using it, or it can be thousands of miles away. Furthermore, the
applications may be written in different languages and running is disparate
platforms. Because of this, Web service consumers as well as Web service providers
need a way of transferring information that is language and platform independent.
This is where SOAP lends a hand.

Web services are based on SOAP (Simple Object Access Protocol). It provides an
infrastructure for the exchange of structured data in a distributed environment.
SOAP itself is based on XML (Extensible Markup Language). XML is an SGML
(Standard Generalized Markup Language)-based language that facilitates the
structuring of data in documents. In addition, data elements in XML documents
provide information about the data they contain through element names and
attributes.

SOAP was created to facilitate the exchange of information by heterogeneous
systems. XML provides it with structure through schemas and element scope
through namespaces. SOAP is a transport-agnostic protocol: messages can be sent
using HTTP, SMTP, and other protocols. For more on XML, including XML Schema
and XML Namespaces, see Extensible Markup Language (XML) at http://
www.w3.org/XML.

13
Preliminary © Apple Computer, Inc. November 2002

http://www.w3.org/XML
http://www.w3.org/XML

CHAPTER 3

Web Service Essentials

Web Services and SOAP

SOAP is the messaging mechanism that you use when you consume Web service
operations or provide Web service operations to your clients.

All Web service communication is done through SOAP messages. These messages
have an envelope, represented by the SOAP-ENV:Envelope element, and a body,
enclosed by the SOAP-ENV:Body element, containing the message’s content. In
addition the SOAP-ENV:Envelope can contain a SOAP-ENV:Header element enclosing
one or more header entries. The header mechanism is what provides SOAP with
decentralized extensibility. This is how extensions such as Digital Signature and
WS-Security (Web Services-Security) are implemented. For more information on
signatures and security, see [“Web Services Security” chapter].

SOAP provides two ways for representing Web service-operation invokations: RPC
(Remote Procedure Call) and messaging. RPC messaging provides a way of
representing method invokations in SOAP messages. Because of this, however, the
structure of the messages representing operation invocations is fairly rigid. SOAP
messaging, on the other hand, provides greater flexibility; it allows a messages to
contain arbitrary data elements. However, parsing such messages is more
complicated. Because RCP messaging is the more widely used method of invoking
Web services, it is the one used in WebObjects. You can use SOAP messaging if your
application requires it, but you have to process the message to extract the
appropriate data and must perform error checking.

Ingredients of a SOAP Message

14

As Figure 3-1 shows, a SOAP message, represented by the SOAP-ENV:Envelope
element, contains a mandatory SOAP-ENV:Body element an optional SOAP-ENV:Header
element.

Web Services and SOAP
Preliminary © Apple Computer, Inc. November 2002

CHAPTER 3

Web Service Essentials

Figure 3-1 Structure of a SOAP message

SOAP-ENV:Envelope
SOAP-ENV:encodingStyle

; i HeaderEntry '
: | SOAP-EN! V:encodingStyle '
|| SOAP-ENV:actor '
: | SOAP-ENV:mustUnderstand E

| BodyEntry b
| SOAP-ENV:encodingStyle Ll

SOAP-ENV:faultcode i
SOAP-ENV-faultstring

:
|

i ' DetailEntry
I .
' . SOAP-ENV:encodingStyle

I

Ingredients of a SOAP Message
Preliminary © Apple Computer, Inc. November 2002

15

CHAPTER 3

Web Service Essentials

Table 3-1 describes the elements of a SOAP message.

Table 3-1 The elements of a SOAP message
Element Parent Use Description
SOAP-ENV:Envelope None 1 Root element of the message.
SOAP-ENV:Header SOAP-ENV:Envelope ? Encloses header entries.
Header entries SOAP-ENV:Header % Heather entries provide additional

information on the message’s content. For
example, digital signatures, authorization
data, and so on.

SOAP-ENV:Body SOAP-ENV:Envelope 1 Encloses the message’s body entries.

Body entries SOAP-ENV:Body * Body entries make up the content of the
message. Their element names depend on
the message’s content.

SOAP-ENV:Fault SOAP-ENV:Body ? Body entry used to report a problem. When
used, no other body entry can be present.

SOAP-ENV:faultcode SOAP-ENV:Fault 1 Indicates the reason for the fault. Intended
for application use.

SOAP-ENV:faultstring SOAP-ENV:Fault 1 Human-readable version of the fault reason.

SOAP-ENV:faultactor SOAP-ENV:Fault ? Indicates which entity along the message
path raised the fault.

SOAP-ENV:detail SOAP-ENV:Fault ? Encloses detail entries.

Detail entries SOAP-ENV:detail * Contain application-specific information

about the fault.

All the attributes that the SOAP envelope schema defines are global (they are not
associated with a particular element). Also, each element in a SOAP message is free
to use any attribute, regardless of where it’s defined, either in SOAP’s schema or

16 Ingredients of a SOAP Message
Preliminary © Apple Computer, Inc. November 2002

CHAPTER 3

Web Service Essentials

another one, which is one of SOAP’s extensibility features. This means that elements
are free to use any number of attributes. Table 3-2 describes the attributes that the
SOAP specification defines.

Table 3-2 Attributes defined in the SOAP specification
Attribute Value Description
SOAP-ENV:actor A URL Specifies the entity that is to process the

element. When absent the actor is the
ultimate recipient of the message. This
attribute is mainly used to assign header
entries to specific entities.

SOAP-ENV:mustUnderstand “0” or “1”. Indicates whether the element’s actor
must process the element. When set to 1
and if the actor is unable to process the
element, the actor must respond with a
SOAP-ENV:Fault.

SOAP-ENV:encodingStyle Alist of Indicates the encoding style used for the
URIs. element’s content.

For more information on SOAP, see Simple Object Access Protocol at http://
www.w3.org/TR.

Web Service Description

For a consumer to be able to use a Web service’s operations, it must know what
operations the Web service provides, the parameters they take, the type of the
values they return, and so on. With intimate knowledge of the Web service, you can
write a Web service client that takes full advantage of the service. However, the idea
behind Web services is to provide a way for an application to dynamically find a
Web service that satisfies its requirements and to learn how to use it. One of the
building blocks that bring that vision closer to reality is WSDL (Web Services
Description Language).

Web Service Description 17
Preliminary © Apple Computer, Inc. November 2002

http://www.w3.org/TR
http://www.w3.org/TR

CHAPTER 3

Web Service Essentials

Like SOAP, WSDL is an XML-based language. A WSDL document tells a service
requestor where a Web service is located and how to use it.

A WSDL document describes a Web service in two ways: an abstract description or
interface and a concrete implementation. The interface section provides a high-level
description of the operations the Web service provides and their parameter and
return types. The implementation section binds each operation described in the
interface section with its implementation (the methods that perform the work).

These are some of the XML elements that WSDL defines to describe a Web service:

portType: This element provides the interface to the Web service. It describes
each operation provided by the service as a set of input (from the consumer) and
output (from the provider) messages that can be generated as a result of
invoking the operation. Included in the list of possible messages are fault
messages.

message: This element describes a SOAP message. It lists the message’s elements,
which are referred to as parts, and their types.

types: This elements list all the data types used as parameters or return types
used in message elements. Essentially, it’s an XML Schema definition.

binding: This element specifies the transport used to send messages between the
Web service consumers and its provider and implements a portType. It also
defines the type of encoding used for each message.

port: This element defines the URL that the Web service consumers use to access
the Web service. It implements a binding.

service: This element encloses one or more port elements.

Figure 3-2 shows the relationship between the major elements of a WSDL
document. Missing from the figure are the definitions element, which is the root
element of WSDL document and the types element.

Figure 3-2 Organization of a WSDL document

service port binding portType operation message
service entry point [~~ | SOAP RPC or messaging [~~ ™| Web-service interface operation’s messages input, output, or fault
operation
'| message encoding
18 Web Service Description

Preliminary © Apple Computer, Inc. November 2002

CHAPTER 3

Web Service Essentials

For the most part, you don’t have to concern yourself with reading or writing WSDL
documents. There are tools available that can both create Java classes from a WSDL
document and generate a WSDL file from a set of Web-service implementation
classes. For more information on WSDL, see Web Services Description Language
(WSDL) at http:/ /www.w3.org/TR.

Web Service Description 19
Preliminary © Apple Computer, Inc. November 2002

http://www.w3.org/TR

CHAPTER 3

Web Service Essentials

20 Web Service Description
Preliminary © Apple Computer, Inc. November 2002

CHAPTER 4

AXxis Basics

A SOAP processor aids both consumers of Web services and their providers to
accomplish their task without having to worry about the intricacies of SOAP-
message handling. As far as the consumer is concerned, it invokes an operation, in
a similar way a remote procedure call is normally invoked. The Web service
provider only needs to implement the logic required by the business problem it
solves. The consumer’s SOAP processor converts the method invocation into a
SOAP message. This message is transmitted through a transport, such as HTTP or
SMTP, to the service provider’s SOAP processor, which parses the message into a
method invocation. The provider then executes the appropriate logic and gives the
result to the SOAP processor, which parses the information into a SOAP message.
The message is transmitted through a transport to the consumer. It's SOAP
processor parses the message and hands it out to the invoking code.

This chapter contains the following sections:
m “The Axis SOAP Engine” (page 21)

m “Serialization and Deserialization of Objects” (page 23)

The Axis SOAP Engine

As mentioned in “Axis” (page 11), WebObjects uses the Axis framework to both
serve and consume Web services. Axis is an interface between your business logic
and the Web-services world.

The Axis Web service-processing model is shown in Figure 4-1.

The Axis SOAP Engine 21
Preliminary © Apple Computer, Inc. November 2002

CHAPTER 4

Axis Basics

Figure 4-1 The SOAP Message processing cycle

Consumer SOAP Engine Transport SOAP Engine Provider

Regquast

\ /

]
- |

Rasponse

22

Axis implements a very extensible message-processing model. It uses handlers and
handler chains to allow its functionality to be tailor to a wide variety of situations
and requirements. A handler is an atomic component that acts on a specific part of
a SOAP message; for example, a handler can be in charge of performing
authentication on the message’s sender before allowing it to be processed by the
provider. A special handler, the pivot handler (another name for the service’s
provider), is in charge of executing the Web service’s logic. It’s called pivot handler
because it is where the message’s processing cycle changes from request processing
to response processing.

A handler chain is a group of handlers that can be viewed as a unit. An important
concept to grasp is that handlers and handler chains are not Web service specific.
For example, you can develop handlers that process SOAP messages from
transports other than HTTP or SMTP to increase security without having to change
the Web service implementation. If you start now, you may be able to sell those
handlers to others for a nice profit.

Handlers are simply Java classes that act on an org.apache.axis.MessageContext
object. A MessageContext object contains several useful objects, but the most
important are the requestMessage and the responseMessage. Handlers processing
incoming messages normally access the requestMessage object, while those
processing the outgoing message access the responseMessage object. However, Axis
provides no restrictions; a handler can access and modify whatever it pleases. This
is helpful if you need a handler to act both on incoming and outgoing messages.

Figure 4-2 shows the relationship between handlers and chains in Axis from the
point of view of a Web service provider, while Figure 4-3 does the same from the
perspective of a consumer.

The Axis SOAP Engine
Preliminary © Apple Computer, Inc. November 2002

CHAPTER 4

Axis Basics

Figure 4-2 Web service processing—provider view

Transport request chain Global request chain Web service chain

w-ﬁ Request handler [Raquest hander |—r#e] Rsquesthandier || Requesthandler || Request handlar |—#e| Requést handiar

B

et handler
iproviger) |

| . Websenice
img d

Transport response chain Global response chain

Response handler Response hander |—t—— Response handler Fesponse handler |a—-—! Response handier Fesponse handler
p P

Figure 4-3 Web service processing—consumer view

Web service-request chain Global request chain Transport request chain

/'l Request handier || Request handler || Requesthandler || Requesthandler || Request handier || Request handler

Operaticn
invocation

Message
sender

‘Web service-response chain Global response chain Transport response chain

Response handier Response handier [a——1—] Response handier Fasponse handler |a——1—] Response handier Response handler
p P

Notice that there are three types of chains: transport, global, and Web service. A
transport chain can deal with issues specific to the transport used to send and
receive SOAP messages. A global chain is one that processes every SOAP message,
regardless of the transport used and the target Web service. Finally, a Web service
chain is one tailored for a specific Web service. For more information on handlers
and chains, see Axis’s documentation at http://xml.apache.org/axis.

Serialization and Deserialization of Objects

Complex classes require a custom serialization and deserialization strategy.
WebObjects provides serializers and deserializers for [most of its classes]. If you
have special classes that required a special serializer and deserializer, you have to
create them.

Serialization and Deserialization of Objects 23
Preliminary © Apple Computer, Inc. November 2002

http://xml.apache.org/axis

CHAPTER 4

Axis Basics

Creating serializer and deserializer classes is a simple process, but requires
knowledge of SAX (Simple API for XML). To learn how to process SAX callbacks in
your serializers and deserializers, see Java & XML (O'Reilly).

24 Serialization and Deserialization of Objects
Preliminary © Apple Computer, Inc. November 2002

CHAPTER 5

Developing Web Services

You can publish as Web service operations the public methods of any class that
contains a no-argument constructor. In addition, methods that need access
WebObjects class must have an org.apache.axis.MessageContext as their first
parameter. Also, methods that correspond to document-style operations, must
return an org.w3c.dom.Document. You can find documentation for these classes at
http://xml.apache.org/axis, and http://www.w3.org respectively.

Providing a Calculator Web Service

As a companion to this document, in projects/Calculator, you find the Calculator
project. It’s a simple WebObjects-application project used to build an application
that serves a Web service called Calculator. The service provides four operations:
add, subtract, multiply, and divide. The operations take two parameters of type
double and return a value of type double. The Calculator. java class, the workhorse
of the Calculator Web service, is listed in Listing 5-1.

Listing 5-1 Calculator.java class in Calculator project

public class Calculator extends Object {

public static double add(double addendl, double addend2) {
double sum = addendl + addend?Z;
return sum;

Providing a Calculator Web Service 25
Preliminary © Apple Computer, Inc. November 2002

http://xml.apache.org/axis
http://www.w3.org

CHAPTER 5

Developing Web Services

public static double subtract(double minuend, double subtrahend) {
double difference = minuend - subtrahend;
return difference;

public static double multiply(double multiplicandl, double multiplicand2) {
double product = multiplicandl * multiplicandZ;
return product;

public static double divide(double dividend, double divisor) {
double quotient = dividend / divisor;
return quotient;

To provide a Web service based on Calculator. java the Application object registers
Calculator.java as a Web service with the follwing method invocation:

WOWebServiceRegistrar.registerWebService(Calculator.class, true);

To become a Web service provider, build and run the Calculator application. To
view the WSDL document for the Web service, point your Web browser to http://
localhost:4210/WebObjects /Calculator.woa/ws/Calculator?wsdl.

Using the Calculator Web Service

The companion project Calculator_Client, located in project/Calculator_Client,
contains the source files used to create the Calculator_Client application, which
consumes the Calculator Web service described in “Providing a Calculator Web
Service” (page 25). Its main class is CalculatorClient. java, listed in .

Listing 5-2 CalculatorClient.java class in Calculator_Client project

import java.net.*;
import java.util.Enumeration;

26 Using the Calculator Web Service
Preliminary © Apple Computer, Inc. November 2002

http://localhost:4210/WebObjects/Calculator.woa/ws/Calculator?wsdl
http://localhost:4210/WebObjects/Calculator.woa/ws/Calculator?wsdl

CHAPTER 5

Developing Web Services

import com.webobjects.foundation.*;
import com.webobjects.webservices.client.*;

public class CalculatorClient extends Object {

/**

* Object through which the Web service's operations are invoked.
*/

private WOWebServiceClient _serviceClient = null;

/**
* Address for the Web service's WSDL document.
*/

private String _service_address = "http://localhost:4210/cgi-bin/WebObjects/

Calculator.woa/ws/Calculator?wsdl";

/**

*/

public CalculatorClient() f{
super();

/**
* Obtains the Web service's operation names.
* @return the Web service's operation names.
*/
public NSArray operations() f{

NSArray operations =

(serviceClient().operationsDictionaryForService(serviceName())).allValues();

NSMutableArray operation_names = new NSMutableArray();

Enumeration operations_enumerator = operations.objectEnumerator();

while (operations_enumerator.hasMoreElements()) {
WOCTientOperation operation =

(WOCTientOperation)operations_enumerator.nextElement();

operation_names.addObject((String)operation.name());

}

return operation_names;

/**

Using the Calculator Web Service
Preliminary © Apple Computer, Inc. November 2002

27

28

CHAPTER 5

Developing Web Services

* Invokes the Web service's operations.

* @param operation operation to invoke;

* @param arguments argument Tist;

* @return value returned by the operation.

*/

public Double invoke(String operation, Object[] arguments) { //1

Object result = serviceClient().invoke(serviceName(), operation, arguments);
return (Double)result;

/**

* Obtains the Web service name.

* Normally one WSDL file describes one Web service,

* but it could describe one or more services.

* @return Web service name.

*/

public String serviceName() f{ /]2
return (String)serviceClient().serviceNames().objectAtIndex(0);

/**
* Obtains an agent through which service operations are invoked.
* @return service agent.
*/
private WOWebServiceClient serviceClient() {

if (_serviceClient == null) {

_serviceClient = clientFromAddress(_service_address);
}
return _serviceClient;

/**

* Obtains a Web service-client object through which

* service operations can be invoked.

* @return Web service-client object.

*/

private static WOWebServiceClient clientFromAddress(String address) f{
WOWebServiceClient service_client = null;

// Create the Web service's URL.
URL ur';

Using the Calculator Web Service
Preliminary © Apple Computer, Inc. November 2002

CHAPTER 5

Developing Web Services

try {
url = new URL(address);

}

catch (MalformedURLException e) {
url = null;

// Get a service-client object.
service_client = new WOWebServiceClient(url);

return service_client;

The following list highlights some aspects of CalculatorClient.java.

1. The invoke method defines as parameters the operation name and its arguments.
It uses the invoke method of WOWebServiceClient to invoke the Web service
operation.

2. The serviceName method returns the name of the first Web service in the list of
Web services defined by the WSDL document used to create the
WOWebServiceClient object. Most WSDL documents define one Web service,
but a WSDL document can define more than one Web service.

Build and run the Calculator_Client application. Your Web browser should show a
page like the one shown in Figure 5-1. If your Web browser didn’t launch, launch it
and connect to http:/ /localhost:5210/cgi-bin/WebObjects /Calculator_Client.woa.

Using the Calculator Web Service 29
Preliminary © Apple Computer, Inc. November 2002

http://localhost:5210/cgi-bin/WebObjects/Calculator_Client.woa

CHAPTER 5

Developing Web Services

Figure 5-1 A possible user interfact to the Calculator Web service
000 %y Web Calculator -
add 7.0
divide
3.0
subtract
[Calculate | 21.0
A
Using Sessions

30

Using sessions during Web service consumption is simple. Each
WOWebServiceClient object initializes a WOSession object when it’s instantiated.
However, you can change the session a client uses. For example, you can develop
an application that provides several related Web services. A practical way to share
information among the services is to store shared data in a session object.

The Security project, in projects/Security, showcases a simple Web service
application that provides two Web services: Logln and AccessData. The Logln
service accepts user data and stores in a session. To give the AccessData service
access to the information recorded by Logln, its session is set to the one used by
LogIn.

The Security_Client project, in projects/Security_Client, implements a Web
service client that consumes LogIn and AccessData. It sets user name and password
properties through Logln and retrieves them through AccessData. [listing] shows
this process.

Using Sessions
Preliminary © Apple Computer, Inc. November 2002

CHAPTER 5

Developing Web Services

Listing 5-3 Security_Client project—Application. java file

import
import
import

public

com.webobjects.appserver.*;
com.webobjects.foundation.*;
com.webobjects.webservices.client.*;

class Application extends WOApplication f{

public static void main(String argv[]) {

WOApplication.main(Cargv, Application.class);

public Application() f{

super();
System.out.printin("Welcome to " + this.name() + "1");

// Create the service client used to consume
// both LogInService and AccessDataService.

SecurityClient securityClient = new SecurityClient();

// Log in as Catherine with the password enirehtac.
securityClient.logIn("Susana", "anasus");

// Get session from LogInService.

WOWebService.SessionInfo sessionInfo = securityClient.logInSessionInfo();

// Set AccessDataService's session to the one obtained from LogInService.

securityClient.setAccessDataSessionInfo(sessionInfo);

// Get values of properties stored in session created by LogInService.
String userName = securityClient.userName();
String userPassword = securityClient.userPassword();

// Print the properties' values.
System.out.printin();

System.out.prjnt]n("**");

System.out.printin("User name from AccessDataService: " + userName);

System.out.printin("User password from AccessDataService: "
System.out.priht]h("**")'

System.out.printin();

Using Sessions
Preliminary © Apple Computer, Inc. November 2002

+ userPassword);

31

CHAPTER 5

Developing Web Services

Listing 5-4 shows the Service_Client class.

Listing 5-4 Security_Client project—SecurityClient. java file

import java.net.*;

import com.webobjects.appserver.*;
import com.webobjects.foundation.*;
import com.webobjects.webservices.client.*;

/**

* Used to consume the LogIn and AccessData Web services.
*/

public class SecurityClient extends Object {

private WOWebServiceClient _TogInClient = null;
private WOWebServiceClient _accessDataClient = null;

private final String LogInServiceAddress = "http://localhost:4220/cgi-bin/Web0Objects/
Security.woa/ws/LogIn?wsdl";

private final String AccessDataServiceAddress = "http://localhost:4220/cgi-bin/
WebObjects/Security.woa/ws/AccessData?wsdl";

private final String LogInService = "LogIn";
private final String AccessDataService = "AccessData";

public SecurityClient() ({
super();

/**

* Invokes the setUserInfo operation of the LoglIn Web service.

*/

public void TogIn(String name, String password) {
Objectl[] arguments = { name, password };
logInClient().invoke(LogInService, "setUserInfo", arguments);

32 Using Sessions
Preliminary © Apple Computer, Inc. November 2002

CHAPTER 5

Developing Web Services

/**

* Invokes the userName operation of the AccessData Web service.

* @return user name stored in shared session object.

*/

public String userName() {
Object result = accessDataClient().invoke(AccessDataService, "userName", null);
return (String)result;

/**
* Invokes the userPassword operation of the AccessData Web service.
* @return user password stored in shared session object.
*/
public String userPassword() {
Object result = accessDataClient().invoke(AccessDataService, "userPassword",
nully;
return (String)result;

/**
* Obtains a Web service client through which LogIn operations are invoked.
* @return a Web service client for Logln.
*/
protected WOWebServiceClient TogInClient() {

if (_logInClient == null) {

_logInClient = clientFromAddress(LogInServiceAddress);
}
return _logInClient;

/**
* Obtains a Web service client through which AccessData operations are invoked.
* @return a Web service client for AccessData.
*/
protected WOWebServiceClient accessDataClient() {

if (_accessDataClient == null) {

_accessDataClient = clientFromAddress(AccessDataServiceAddress);
}
return _accessDataClient;

Using Sessions 33
Preliminary © Apple Computer, Inc. November 2002

34

CHAPTER 5

Developing Web Services

/**
* Obtains session information from LogInService.
* @return session information from LogInService.
*/
public WOWebService.SessionInfo TogInSessionInfo() {
return TogInClient().sessionInfoForServiceNamed(LogInService);

/**

* Sets the session used by AccessDataService.

*/

public void setAccessDataSessionInfo(WOWebService.SessionInfo sessionInfo) f{
accessDataClient().setSessionInfoForServiceNamed(sessionInfo, AccessDataService);

/**

* Obtains a Web service client through which

* service operations are invoked.

* @return Web service client object.

*/

private WOWebServiceClient clientFromAddress(String address) f{
WOWebServiceClient service_client = null;

// Create the Web service's URL.
URL url;
try {
url = new URL(address);
}
catch (MalformedURLException e) {
url = null;

// Get a service-client object.
service_client = new WOWebServiceClient(url);

return service_client;

Using Sessions
Preliminary © Apple Computer, Inc. November 2002

CHAPTER 5

Developing Web Services

Adding Web Service Support to Existing Projects

To add Web service—provider support to an existing project, you have to add the
JavaWebServiceSupport framework to it. To add Web service-client support, you
need to add the JavaWebServiceSupport and JavaWebServiceClient frameworks.
The frameworks are located in /System/Library/Frameworks ($NEXT_ROOT/Library/
Frameworks on Windows).

Adding Web Service Support to Existing Projects 35
Preliminary © Apple Computer, Inc. November 2002

CHAPTER 5

Developing Web Services

36 Adding Web Service Support to Existing Projects
Preliminary © Apple Computer, Inc. November 2002

CHAPTETR 6

Developing Direct to Web
Services Applications

This chapter walks you through the creation of a Direct to Web Services application.
Direct to Web Services allows you to rapidly develop Web service-based
applications that provide access to a data store. As other WebObjects rapid-
development approaches, Direct to Web Services is a data model-based and rule-
based application development approach.

You create a project called HousesForSale that provides a Web service with two
operations, one to find information on houses for sale and another to find real-estate
agents. If you don’t want to create the project by hand, you can find it in projects/
HomesForSaTe.

The Data Model

The HousesForSale project includes JavaRealEstate framework located in /Library/
Frameworks. The framework contains the RealEstate data model file. The data model
defines several entities; you work with only two of them: Listing and
ListingAddress. Figure 6-1 shows the Listing entity definition and data from its
corresponding database table; Figure 6-2 does the same for the ListingAddress
entity.

The Data Model 37
Preliminary © Apple Computer, Inc. November 2002

CHAPTETR 6

Developing Direct to Web Services Applications

Figure 6-1 Listing entity defined in the RealEstate data model

000 @ /Library/Frameworks/JavaRealEstate.framework/Versions/A/Resources/RealEstate.ec

T B EXIEYO0SEE SIS EY

Listing Aftributes

HEEIESL.# o~ & = Name Value Class |External Type
L) Administratar
Agent agentiD Number long =
AgentPhata + = askingPrice BigDecimal monev .
AgentRating + = bathrooms 0 0 Data Browser
Cantactinfa
ContactType + = bedrooms Entity: Listing Qualifier:
Custo i
ustamer + = isSold askingPrice bedrooms bathrooms listingNumber
- listingID 500000 4 2.5 LN #795550
addrass « = lisingNumber | 700000 4 4 LN #796380
agent | listingTypeld | 300000 2 1 LN #123456
eatures 300000 3 2 LN #777787
- = lotSgFt
istingFeaturas * = Sq) 600000 1 1 LN #066380
istingPhatas \ + = sellingPrice 3000000 4 2 LN #162352
singType + 2 sizeSqFt 355000 3 15 LN #642871
suggestedCustomars
suggestions « = vitualTourURL 350000 3 2 LN #006736
SearchListing o = yearBuilt 375000 3 15 LN #457874
- 275000 1 1 LN #114787
BHED ListingFeature : Add Column. 550000 3 2.5 LN #754436
L™ L istina Phata
s ListinaR ———a—— 620000 4 2.5 LN #882184
()) <> Add columnY,
= 400000 4 2 LN #479524
650000 1 1 LN #425118
(— R
[Refetch)
A

38 The Data Model
Preliminary © Apple Computer, Inc. November 2002

CHAPTETR 6

Developing Direct to Web Services Applications

Figure 6-2 ListingAddress entity defined in the RealEstate data model

000 @ /Library/Frameworks /JavaRealEstate.framework/Versions/A/Resources/RealEstate.eo

E: B BXOEWWOSE

CRC AR

k|

ListingAdd
HEEIESL_E@ o= & 2 Name Value Class External Type
& Administratar
Agent + = apthum String varchar =
AgentPhata & = Ccity String varchar .
AgentRating -
cantadtinio . listinglD MNumber long .
CantactType ¢ o State String varchar s
Customer + = street String varchar .
Feature " "
Listing + = Zp String varchar . L
Listing Address 806 Data Browser
ListingFeature :
© ListingPhota 3 Entity: ListingAddress Qualifier:
: yair | 'aptNum city listinglD state street zip
" <null> San jose 1 CA 2289 Dudiedo Drive 95132
<null> Cupertino 4 CA 7 Infinite Loop 95130
<null> Santa Clara 5 CA 123 Lucky Drive 95131
<null> Sunnyvale B CA 1234 Evelyn Ave 95132
287 Palo Alto 7 Cca 124 Florence Ave 95133
<null> Tracy 9 CA 127 Everyone St 94111
<null> Mountain View 12 Cca 772 California Ave 95134
<null> Cupertino 14 CA 17 Turin Dr 95014
34 San Jose 15 CA 47 Calabazas Ave 95015
105 Sunnyvale 16 CA 65 Evergreen Terrace 95011
<null> Cupertino 17 CA 62 Renoit Dr 95014
<null> Cupertino 18 CA 77 Abercrombie Ave 95014
<null> San Jose 19 CA 11 Bernal Ave 95019
288 Palo Alto 21 Cca 124 Florence Ave 95133
[Refetch)

Creating the Project

Follow these steps to create a Direct to Web Services-based application:

1. Launch Project Builder, located in /Developer/Applications.

Creating the Project
Preliminary © Apple Computer, Inc. November 2002

39

CHAPTETR 6

Developing Direct to Web Services Applications

2. In the New Project pane of the Project Builder Assistant, select Direct to Web
Services Application under WebObjects.

3. Name the project HousesForSale.
4. In the Choose EOAdaptors pane, make sure the JDBC adaptor is selected.

5. In the Choose Frameworks pane, add the JavaRealEstate framework located in
/Library/Frameworks.

6. Inthe Build and Launch Project pane, deselect “Build and launch project now.”

7. Edit the Properties file so that it looks like Listing 6-1.

Listing 6-1 Properties file of the HousesForSale project

WOAutoOpenInBrowser false
WOPort 5210

8. Build and run the application.

Web Services Assistant

To customize a Direct to Web Services application you use Web Services Assistant.
It’s located in /Developer/Applications.

After you launch Web Services Assistant, the Connect dialog appears (Figure 6-3).
Enter http://localhost:5210 in the text input field and click Connect.

40 Web Services Assistant
Preliminary © Apple Computer, Inc. November 2002

CHAPTETR 6

Developing Direct to Web Services Applications

Figure 6-3 Connect dialog of Web Services Assistant

8 O0C Connect

Please enter a URL:

http://localhost:52 10|]

¢ Quit Y (Connect)

A

Figure 6-4 shows the Web Services Assistant main window.

Figure 6-4 The Web Services Assistant main window
8 B 6 http://localhost:5210
. o 5 e x
b & & 60 1 O
Save Submit Rewvert Mew Service Mew Operation Clone Delete Freeze Test
¥ http://localhost:5210 Service Name: WODefaultWebService ! Enabled
 WODefaultWebService

[public Entities | operations |

] Allows Transactions

@ Allows WSDL Generation

Selected:

Available:

Name

Administrator
— |Agent
AgentPhoto
AgentRating
Contactinfo
ContactType
Customer
Feature
Listing
ListingAddress
ListingFeature
ListingPhoto
ListinaType

Name

T

Web Services Assistant
Preliminary © Apple Computer, Inc. November 2002

41

CHAPTETR 6

Developing Direct to Web Services Applications

Initially, your application contains one Web service named WODefaultWebService;
the service is disabled. You should not enable this service. Instead, you should
create a Web service and add operations to it. However, you can use the default
Web service to create operations for your custom Web service.

Adding a Custom Web Service

In the Web Services Assistant main window, select http://localhost:5210.
Click the New Service button in the toolbar.
Enter HouseSearch in the Service Name text input field.

Make sure Enabled is selected.

S A

Select Listing and ListingAddress in the Available list of the Public Entities pane
and click the button with the left-pointing arrow.

[CES)S) http://localhost:5210
o -I'L. (‘;; o — = [
b & & 6 0O

Save Submit Revert Mew Service New Operation Clone Delete Freeze Test

¥ http://localhost:5210 Service Name: HouseSearch ™ Enabled

3 HouseSearch " Allows Transactions

WODefaultWebService M Allows WSDL Generation

f Public Entities ! Operations 1

Selected: Available:

Narme + Name

Listing Administrator

ListingAddress | Agent
AgentPhoto
AgentRating
Contactinfo
ContactType
Customer
Feature
Listing
ListingAddress
ListingFeature
ListingPhoto s
ListinaType 1

42 Adding a Custom Web Service
Preliminary © Apple Computer, Inc. November 2002

CHAPTETR 6

Developing Direct to Web Services Applications

Adding an Operation

1. Select HouseSearch under http://1ocalhost:5210.
2. Click the New Operation button.

3. In the New Operation dialog (Figure 6-5), enter findHouseByAskingPrice in the
Name text input field.

4. Choose Listing from the Entity pop-up menu.
5. Make sure Type is “search.”

6. Make sure HouseSearch is selected in the Services list and click OK.

Figure 6-5 The New Operation dialog

0 New Operation

MName: Operation

Entity: (Listing .v]
Type: [search ~)
Services: Service Name

HouseSearch
WODefaultWebService

(cancel) ok)

/.
T —

7. In the main window (Figure 6-6), select askingPrice in the Available list in the
Arguments pane and click the button with the left-pointing arrow twice.

8. Select the first row of the Selected list, enter 10w in the Public Name text input
field, and choose “>" from the Operator pop-up menu.

9. Select the second row, enter high in the Public Name text field, and choose “<*
from the Operator pop-up menu.

Adding an Operation 43
Preliminary © Apple Computer, Inc. November 2002

CHAPTER

Developing Direct to Web Services Applications

Figure 6-6

CRSRS)

http://localhost:5210

The findHouseByAskingPrice operation of the HouseSearch Web service

&P & @ 00 1 O

Clone

Save Submit Revert New Service MNew Operation

Delete Freeze Test

¥ http://localhost:52 10 Operation Name:

¥ # HouseSearch Type:
& findHouseByhsk
. WODefaultWebServ

findHouseByAskingPrice

™ Enabled

search

Entity: | Listing

"Arguments“ Return Values ' Services ‘

W Return SOAP Struct

Selected:
Property Name Public Name Operator
askingPrice low =
askingPrice high <
Public Name: low
Operator: [I-"i
== s

-
+

=1
A
v

Available:

[GID]

¥ address

> agent
askingPrice
bathreoms
bedrooms

P features
isSold
listingNumber

P listingPhotos

K

44

10. In the Return Values pane, select askingPrice from the Available list and click
the button with the left-pointing arrow. Repeat for address.appNum,
address.street, address.city, address.state, and address.zip.

Adding an Operation

Preliminary © Apple Computer, Inc. November 2002

CHAPTETR 6

Developing Direct to Web Services Applications

866 http://localhost:5210
17} u O o = = f)
8% g, (@ -1 1 B K
o & B & ¥ 6 0 U ©
Save Submit Rewvert New Service New Operation Clone Delete Freeze Test
¥ http://localhost:52 10 Operation Name: findHouseByAskingPrice E Enabled
v f‘, HouseSearch Type: search Entity: Listing E Return SOAP Struct

& findHouseByAsk
WODefaultWebServ

{ Arguments ! Return Values { Services 1

Selected: Available:
Property Name Fublic Name : [GID]
askingPrice askingPrice P address
address.aptNum addressAptNum L > agent
address.city addressCity —
address.state addressState L8 2SAIngRIkD
address.street addressStreet - bathrooms
address.zip addressZip — bedrooms
v | [P features
isSold

listingMumber
¥ listingPhotos
P listingType]

IntSnFr

Public Name: | askingPrice

Testing an Operation

1. Select findHouseByAskingPrice under HouseSearch under http://
lTocalhost:5210.

2. Select Return SOAP Struct.
3. Click the Test toolbar button.

The test window ([figure]) has two panes: the Parameters pane and the Result
pane. In the Parameters pane you enter the values for the operation’s
parameters. When you click Test, the Result pane shows the return values of the

operation.

4. Enter 250000 in the Low text input field, 350000 in the High text field, and click
Test.

Testing an Operation 45

Preliminary © Apple Computer, Inc. November 2002

CHAPTETR 6

Developing Direct to Web Services Applications

Figure 6-7 The test window of the findHouseByAskingPrice operation

000 Operation findHouseByAskingPrice (Service HouseSearch)

" Testing " Service WSDL }

_ Parameters

Low: 250,000.00

High: 350,000.00

_ Result

8§
(askingPrice = 300000.0000000000000000000000000000007),
(addressZip = 95131),
(addressAptNum = <com.webobjects.foundation.NSKeyValueCoding$ Null=),
(addressStreet = 123 Lucky Drive),
(addressState = CA),
(addressCity = Santa Clara)

(askingPrice = 300000.0000000000000000000000000000007),
(addressZip = 95132),

(addressAptNum = <com.webobjects.foundation.NSKeyValueCoding$ Null=),
(addressStreet = 1234 Evelyn Ave),

(addressState = CA),

(addressCity = Sunnyvale)

(askingPrice = 275000.0000000000000000000000000000007),
(addressZip = 95011),

(addressAptNum = 105),

(addressStreet = 65 Evergreen Terrace),

(addressState = CA),

(addressCity = Sunnyvale)

Using WODefaultWebService Operations

1. Inthe Web Service Assisntat main window, select WODefaultWebService under
http://localhost:5210.

46 Using WODefaultWebService Operations
Preliminary © Apple Computer, Inc. November 2002

CHAPTETR 6

Developing Direct to Web Services Applications

2. In the Public Entities pane, select ListingAddress in the Available list and click
the button with the left-pointing arrow.

Web Services Assistant adds four operations to WODefaultWebService:
deletelistingAddress, insertListingAddress, searchListingAddress, and
updatelistingAddress. However, only the searchListingAddress operation is

enabled.
®00 http://localhost:5210
o S #F‘ P x
kﬁ* i S el & & e C ! Y
Save Submit Rewvert New Service New Operation Clone Delete Freeze Test
¥ http://localhost:5210 Service Name: WODefaultWebService) Enabled
v 1?, HouseSearch] Allows Transactions
& find HouseByAsk Allows WSDL Generation
v WODefaultWebServ
deleteListi di . - '
. & e.ls.mgA I " Public Entities { Operations E
insertlistingAdd
% searchListingAd
updatelistingAc Selected: Available:
Name + Name
ListingAddress _ | Administrator
| |Agent
AgentPhoto
AgentRating
Contactinfo
ContactType
Customer
Feature
Listing
ListingAddress
ListingFeature -
ListingPhoto ud
ListinaTvpe L
—) T+
P

3. Select searchListingAddress under WODefaultWebService.

4. Click the Clone toolbar button, enter findHouseByCity in the text input field of
the Clone dialog, and click Clone.

8 O0C Clone

Please enter a name for the clone:

findHouseByCity

(cancel) (Clone)

/.
T m——

Using WODefaultWebService Operations 47
Preliminary © Apple Computer, Inc. November 2002

CHAPTETR 6

Developing Direct to Web Services Applications

5. Select findHouseByCity under WODefaultWebService.

6. Inthe Services pane, select HouseSearch in the Available list and click the button
wiht the left-pointing arrow.

7. Inthe Selected pane, select WODefaultWebService and click the button with the
minus sign. The operation is now part of the HouseSearch Web service.

®0 0 http://localhost:5210
17} 7 = o = = T N s]
S e : = i
& & = % ¥ 6 0 U ©
Save Submit Rewvert New Service New Operation Clone Delete Freeze Test
¥ http://localhost:5210 Operation Name: findHouseByCity E Enabled
v _f‘, HouseSearch Type: search Entity: ListingAddress] Return SOAP Struct
@ findHouseByAsk
@ findHouseByCity { Arguments ‘ Return Values ' Services *

v WODefaultWebSery
deleteListingAd:

insertListingAdd Selected: Available:
& searchListingAd Service Name] T
updateListingAc HouseSearch HouseSearch

‘WODefaultWebService

48

8. Select findHouseByCity under HouseSearch and display the Arguments pane.

9. Select the aptNum property in the Selected list and click the button with the minus
sign. Repeat for street and zip.

10. In the Return Values pane, remove all properties from the Selected list.

11. Select 1isting.askingPrice in the Available list and click the button with the left-
pointing arrow. Repeat for Tisting.bathrooms, Tisting.bedrooms, and
listing.yearBuilt.

Using WODefaultWebService Operations
Preliminary © Apple Computer, Inc. November 2002

CHAPTETR 6

Developing Direct to Web Services Applications

®0 0 http://localhost:5210

¥ 5 P Lo

& & 2 & ¥ 6 0 W o

Save Submit Rewvert New Service New Operation Clone Delete Freeze Test
Operation Name: findHouseByCity E Enabled

¥ htup://localhost:5210
v 2, HouseSearch

v

& findHouseByAsk
& findHouseByCity

. WODefaultWebServ

o deletelistingAd
insertlistingAdd
& searchListingAd
' updateListingAc

(a— T

12. Select Return SOAP Struct and test the operation.

Type: search

Entity: ListingAddress

) Return SOAP Struct

Arguments Services

Selected: Available:
Property Name Fublic Name H 'fﬂfngNumner .
listing.askingPrice listingAskingPrice — ¥ listingPhotos
listing.bathrooms listingBathrooms (S| » listingType
listing.bedrooms listingBedrooms = lotSgFt
listing.yearBuilt listingYearBuilt (— sellingPrice
sizeSqFt

Public Name: listingYearBuilt

¥ suggestedCustomers
virtualTourURL

yearBuilt
state
street re
zip v

Using WODefaultWebService Operations
Preliminary © Apple Computer, Inc. November 2002

49

CHAPTETR 6

Developing Direct to Web Services Applications

000 Operation findHouseByCity (Service HouseSearch)

!' Testing " Service WSDL }

_ Parameters
City: Palo Alto
State: CA
— Result

[t
(listingBathrooms = 1.0,
(listingBedrooms = 1.0),
(listingAskingPrice = 600000.000000000000000000000000000000),
(listingYearBuilt = 1994)

(listingBathrooms = 1.0,
(listingBedrooms = 1.0),
(listingAskingPrice = 650000.000000000000000000000000000000),
(listingYearBuilt = 1994)

Observing SOAP Messages Using TCPMonitor

1. If you haven’t saved the Web service’s configuration in Web Service Assistant,
do so now.

50 Observing SOAP Messages Using TCPMonitor
Preliminary © Apple Computer, Inc. November 2002

CHAPTETR 6

Developing Direct to Web Services Applications

2. Open the project’s user.d2wmodel file in Rule Editor by Control-clicking the
user.d2wmodel file under the Resources group in the HouseSearch Project
Builder main window and choosing Open with Finder.

000 { | HousesForSale - user.d2wmodel o
K\ "é’ HousesForSale | :]
G‘:pjn&u;is";:rme [_ _@Fnd) ABuld) SRun , 'dDebug
b [Classes é (4] & user.d2wmodel:1 % 00
» [] Web Components Ak m
¥ [T Resources _&‘ rul:s =
2 !:WOAfile.Jcns w "clozz" = "com.webobjects.directtoweb.Rule";
=] ~ Propel_"_tles - E “quthor® = "168";
a i K| "rhs" = {
=] L pen Ith Finder > b ; "claoss" = "com.webobjects.directtoweb.Assignment”;
W pen As... "valug" =
» [in Reveal in Finder I “low",
T 2 high"
: Show Info i
:EE R E "keyPath" = "argumentkeys";
o Fl ename Q .
8 i
Delete = the" = |) .
Add To Bookmarks < "c:lussu = "cqm.webobjects..eocorjtr?l.EDKequlueQuullfler H
value" = "findHouseByvhAskingPrice";
] "zelectorMame" = "isEqualTo";
Gmup 5 "key" = "operationMome"; ke
8 3 e
Make Localizable b v
HousesForSa 4
T— P —
New File...
MNew Group
Add Files...

Add Frameworks...

3. In Rule Editor, click New.

4. Enter "servicelocationURL" in the Key text input field.

5. Enter (serviceName = 'HouseSearch') in the Left-Hand Side pane.

6. Enter http://17.203.33.19:5299/cgi-bin/WebObjects/HousesForSale.woa in the
Value text field.

7. Enter 50 in the Priority text field.

8. Save the user.d2wmodel file.

9. Close the Web Services Assistant window.

Observing SOAP Messages Using TCPMonitor 51
Preliminary © Apple Computer, Inc. November 2002

CHAPTETR 6

Developing Direct to Web Services Applications

000 & user.d2wmodel

Lhs Rhs Key Rhs Value Priority

"serviceLocationURL" http://17.203.33.19:5299/cgi-bi 50
(operationName = ‘findHouseByAskingPrice") argumentKeys (low, high) 100
(operationName = findHouseByCity") argumentKeys (city, state) 100
((operationName = 'findHouseByAskingPrice') and (comparisonKey < 100
((operationName = 'findHouseByAskingPrice") and (comparisonKey > 100
(operationName = ‘findHouseByAskingPrice") entityName Listing 100
(operationName = findHouseByCity") entityName ListingAddress 100
(operationName = ‘findHouseByAskingPrice") isOperationFrozen false 100 1
(operationName = findHouseByCity") isOperationFrozen false 100 1)
31 rules [New | [Delete |
Left-Hand Side Right-Hand Side
| = | < | <= | == | < | = | like | Class: Assignment |:]
(serviceName = 'HouseSearch') Custom:

Key: | “serviceLocationURL" Priority: |50

Value: “httpz17.203.33.19:5299/cgi-bin/WebObjects/
HousesForSale woa"

(serviceName = "HouseSearch’)

(And \, (Or \, (Not \, (Remcwe\,

/£
T —— —X_—

10. Launch TCPMonitor by double-clicking TCPMonitor in /Developer/Examples/
JavaWebObjects.

11. Enter 5299 in the Listen Port text input field and 5210 in the Target Port text field
and click Add.

12. Display the Port 5299 pane of TCPMonitor.

13. In Web Services Assistant, enter http://Tocalhost:5299 in the text input field of
the Connect dialog and click Connect.

Notice that TCPMonitor shows you the request and response documents as Web
Services Assistant communicates with the HousesForSale application.

14. If you test the findByCity or findByAskingPrice operations, the WSDL (Web
Services Description Language) document for the HouseSearch Web service is
displayed in the response pane of TCPMonitor, as shown in Figure 6-8.

52 Observing SOAP Messages Using TCPMonitor
Preliminary © Apple Computer, Inc. November 2002

CHAPTETR 6

Developing Direct to Web Services Applications

Figure 6-8 TCPMonitor window

000 TCPMonitor
;J Admin ' Port 5299‘
f N . 5 .
[Stop | Listen Port: 5299 Host: Port: 5210
State Time Request Host Target Host Request...

--- Most Recent -—-

Done 10/21/02 08:57:44 AM ebruce.apple.com
Done 10/21/02 08:57:45 AM ebruce.apple.com
Done 10/21/02 08:59:56 AM ebruce.apple.com
Done 10/21/02 08:59:57 AM localhost

{ Remove Selected)} (" Remove All)

POST http://ebruce:5299 /cgi-bin/We...
POST http://ebruce:5299 /cgi-bin/We...

GET /cgi-bin/WebObjects/WebServicesAssistant.woa/ws/HouseSearch?wsdl HTTP/1.1
User-Agent: Javal.3.1

Host: localhost:5299
Accept: text/html, image/gif, image/jpeg, *; g=.2, */*; g=.2
Connection: keep-alive

(B

HTTP/1.@ 20@ Apple WebObjects
x-webobjects-loadaverage: 2
content-type: text/xml
connection: keep-alive
content-length: 5781

<?xml version="1.8"7>
<definitions name="HouseSearchDefinition"

— =))4 1
[} XML Format (save) (Resend) { Switch Layout) { Close)
A
Freezing Operations

You can freeze operations when you need to customize their workings. Frozen
operations take the form of Web components in your application project. When you
freeze an operation, the parts of the Web service’s WSDL document that correspond
to the operation are frozen as well. In addition, you cannot use Web Services

Freezing Operations
Preliminary © Apple Computer, Inc. November 2002

53

CHAPTETR 6

Developing Direct to Web Services Applications

Assistant to customize further a frozen operation; for example, you cannot add or
remove arguments or return values with Web Services Assistant. If you need to do
so, you have to edit the Java file and WSDL document manually.

The following list itemizes the steps needed to freeze an operation.

1. In Web Services Assistant, select the operation you want to freeze and click the
Freeze toolbar button. In the Freeze dialog, enter the name of the frozen-
operation component and click Freeze.

e

Freeze

Please enter a name for the frozen operation:

FindHouseByCity

(cancel) [Freeze)

54

066 http://localhost:5299
I3
¥ & - & @ ¢ o}
Save Submit Revert Mew Service New Operation Clone Delete Freeze Test
¥ http://localhost:5299 Operation Name: findHouseByCity W Enabled
v 2, HouseSearch Type: search Entity: | ListingAddress E Return SOAP Struct
& findHouseByAskingPrice (search Li:
& findHouseByCity (search ListingAdc { Freezing 1 P
¥ woDefaultWebService -
deletelistingAddress (delete Listin
insertListingAddress (insert Listing
& searchListingAddress (search Listir
updateListingAddress (update List
This operation is frozen with the name:
Find HouseByCity
(" Set Frozen Operation Name...) {* Unfreeze)
C——————— 3 Talr
L

Freezing Operations
Preliminary © Apple Computer, Inc. November 2002

CHAPTER 6

Developing Direct to Web Services Applications

Web Services Assistant adds the FindHouseByCity component to the
HouseForSale project, as shown in [figure].

Figure 6-9 The FindHouseByCity component—the frozen version of the
findHouseByCity operation

000 i | HousesForSale - FindHouseByCity.java =
K\ @ | @ HousesForSale |:]
Groups & Files . @Find 4 SGBuild 4, SRun , i Debug |
¥ 2k HousesForsale
prj Classes o |i| FindHouseByCity.java:1l = : <No selected symbol> = o e @
7[’" Web Components /% Thiz class was generated by Direct To Web Services #/
> 3 Van i t bobjects.foundati *; [[
FindHouseByCity import com.webobjects.foundation.*;

import com.webobjects.eocontrol .#;

import com.webobjects.eocaccess . ¥;

import com.webobjects.oppserver . #;

import com.webobjects.webservices.support.xml . #;
import com.webobjects.directtoweb . *;

import com.webobjects.webservices.generation.#*;
import java.math.#;

] ¥ [FindHouseByCity.wo
@ FindHouseByCity.html
FindHouseByCity.wod
“o0 FindHouseByCity.woo
] [FindHouseByCity.java
»- [Resources
P[] Web Server Resources
p- [Interfaces
p- | Frameworks
p- [Documentation
» [Products

@ Targets ;1 Bookmarks , &dClasses 4 [JFiles

public closs FindHouseByCity extends WOSearchOperation {

protected static NSArray _inputPartNomes = new NSsrray(new
String[]{"city", "state"});

protected static NSArray _inputPartkeyPoths = new M3Array(new
String[]{"city", "state"});

protected static NSArray _outputPortMomes = new M3Array(new
String[]{"listingaskingPrice", "listingBathrooms", "listingBedrooms", &
"listingvearBuilt"}y;

dombod ebok o WS s vk Mk e Dl L T

Build succeeded P
e}

2. Save the Web service configuration and close the Web Services Assistant
window.

3. Restart the application.
The WSDL document corresponding to a frozen operation is stored in the HTML

file of the corresponding component. Listing 6-2 shows the WSDL document for the
frozen findHouseByCity operation.

Listing 6-2 The WSDL document of the frozen findHouseByCity operation—the HTML
file of the FindHouseByCity component

<?xml version="1.0"7>
<definitions name="[AnyService]Definition"

Freezing Operations 55
Preliminary © Apple Computer, Inc. November 2002

56

xmins:
xmins:

CHAPTER 6

Developing Direct to Web Services Applications

soap="http://schemas.xmlsoap.org/wsdl/soap/"
xsd="http://www.w3.0rg/2001/XMLSchema"

xmins:tns="http://17.203.33.19/cgi-bin/Web0bjects/HousesForSale.woa/ws/[AnyServicel/
wsd1"
xmins="http://schemas.xmlsoap.org/wsdl/"

xmlns:
:wsdl="http://schemas.xmlsoap.org/wsdl/"

xmlins

xmlns:
:webobjects="http://www.apple.com/webobjects/webservices/soap/"

xmins

lang="http://lang.java/"

soapenc="http://schemas.xmlsoap.org/soap/encoding/"

targetNamespace="http://17.203.33.19/cgi-bin/Web0bjects/HousesForSale.woa/ws/

[AnyServicel/wsd1">

{types>

</types>

<message name="findHouseByCityInput">
<part type="xsd:string" name="city"/>
<part type="xsd:string" name="state"/>

</message>

<message name="findHouseByCityOQutput">
<part type="xsd:anyType" name="return"/>

<{/message>

<message name="WSDLInput">

<{/message>

<message name="WSDLOutput">
<part type="xsd:anyType" name="return"/>

<{/message>

<message name="beginTransactionInput">

<{/message>

<message name="beginTransactionOutput">
<part type="xsd:anyType" name="return"/>

</message>

<message name="commitTransactionlnput">

</message>

<message name="commitTransactionOutput">
<part type="xsd:anyType" name="return"/>

</message>

<message name="rollbackTransactionInput">

</message>

<message name="rollbackTransactionQutput">
<part type="xsd:anyType" name="return"/>

</message>

<portType name="[AnyService]PortType">

Freezing Operations
Preliminary © Apple Computer, Inc. November 2002

CHAPTER 6

Developing Direct to Web Services Applications

<operation name="findHouseByCity" parameterOrder="city state">
<input message="tns:findHouseByCityInput"/>
<output message="tns:findHouseByCityOutput"/>
<{/operation>
<operation name="WSDL">
<input message="tns:WSDLInput"/>
<output message="tns:WSDLOutput"/>
<{/operation>
<operation name="beginTransaction">
<input message="tns:beginTransactionInput"/>
<output message="tns:beginTransactionOutput"/>
<{/operation>
<operation name="commitTransaction">
<input message="tns:commitTransactionlnput"/>
<output message="tns:commitTransactionOutput"/>
<{/operation>
<operation name="rollbackTransaction">
<input message="tns:rollbackTransactionInput"/>
<output message="tns:rollbackTransactionOutput"/>
<{/operation>
</portType>
<binding type="tns:[AnyServicelPortType"
name="[AnyService]SoapBinding"><soap:binding style="rpc" transport="http://
schemas.xmlsoap.org/soap/http"/>
<operation name="findHouseByCity">
<soap:operation soapAction="http://17.203.33.19/cgi-bin/Web0bjects/
HousesForSale.woa/ws/[AnyService]l/wsd1"/>
<input>
<{soap:body use="encoded" namespace="http://17.203.33.19/cgi-bin/WebObjects/
HousesForSale.woa/ws/[AnyServicel/wsdl" encodingStyle="http://schemas.xmlsoap.org/soap/
encoding/"/>
</input>
<output>
<{soap:body use="encoded" namespace="http://17.203.33.19/cgi-bin/WebObjects/
HousesForSale.woa/ws/[AnyServicel/wsdl" encodingStyle="http://schemas.xmlsoap.org/soap/
encoding/"/>
</output>
<{/operation>
<operation name="WSDL">
<soap:operation soapAction="http://17.203.33.19/cgi-bin/Web0bjects/
HousesForSale.woa/ws/[AnyService]/wsd1"/>

Freezing Operations 57
Preliminary © Apple Computer, Inc. November 2002

CHAPTER 6

Developing Direct to Web Services Applications

<input>
<{soap:body use="encoded" namespace="http://17.203.33.19/cgi-bin/WebObjects/
HousesForSale.woa/ws/[AnyServicel/wsdl" encodingStyle="http://schemas.xmlsoap.org/soap/
encoding/"/>
</input>
<output>
<{soap:body use="encoded" namespace="http://17.203.33.19/cgi-bin/WebObjects/
HousesForSale.woa/ws/[AnyServicel/wsdl" encodingStyle="http://schemas.xmlsoap.org/soap/
encoding/"/>
</output>
<{/operation>
<operation name="beginTransaction">
<soap:operation soapAction="http://17.203.33.19/cgi-bin/Web0bjects/
HousesForSale.woa/ws/[AnyService]/wsd1"/>
<input>
<{soap:body use="encoded" namespace="http://17.203.33.19/cgi-bin/WebObjects/
HousesForSale.woa/ws/[AnyServicel/wsdl" encodingStyle="http://schemas.xmlsoap.org/soap/
encoding/"/>
</input>
<output>
<{soap:body use="encoded" namespace="http://17.203.33.19/cgi-bin/WebObjects/
HousesForSale.woa/ws/[AnyServicel/wsdl" encodingStyle="http://schemas.xmlsoap.org/soap/
encoding/"/>
</output>
</operation>
<operation name="commitTransaction">
<soap:operation soapAction="http://17.203.33.19/cgi-bin/Web0bjects/
HousesForSale.woa/ws/[AnyService]/wsd1"/>
<input>
<{soap:body use="encoded" namespace="http://17.203.33.19/cgi-bin/WebObjects/
HousesForSale.woa/ws/[AnyServicel/wsdl" encodingStyle="http://schemas.xmlsoap.org/soap/
encoding/"/>
</input>
<output>
<{soap:body use="encoded" namespace="http://17.203.33.19/cgi-bin/WebObjects/
HousesForSale.woa/ws/[AnyServicel/wsdl" encodingStyle="http://schemas.xmlsoap.org/soap/
encoding/"/>
</output>
<{/operation>
<operation name="rollbackTransaction">

58 Freezing Operations
Preliminary © Apple Computer, Inc. November 2002

CHAPTER 6

Developing Direct to Web Services Applications

<{soap:operation soapAction="http://17.203.33.19/cgi-bin/Web0bjects/
HousesForSale.woa/ws/[AnyService]/wsd1"/>
<input>
<{soap:body use="encoded" namespace="http://17.203.33.19/cgi-bin/WebObjects/
HousesForSale.woa/ws/[AnyServicel/wsdl" encodingStyle="http://schemas.xmlsoap.org/soap/
encoding/"/>
</input>
<output>
<{soap:body use="encoded" namespace="http://17.203.33.19/cgi-bin/WebObjects/
HousesForSale.woa/ws/[AnyServicel/wsdl" encodingStyle="http://schemas.xmlsoap.org/soap/
encoding/"/>
</output>
<{/operation>
</binding>
<{service name="[AnyService]l">
<port name="[AnyServicelPort" binding="tns:[AnyServicelSoapBinding">
<{soap:address location="http://17.203.33.19/cgi-bin/WebObjects/
HousesForSale.woa/ws/[AnyService]l/wsd1"/>
</port>
</service>
</definitions>

Unfreezing Operations

To unfreeze a frozen operation follow these steps:

1. In Web Services Assistant, select the operation you want to unfreeze.
2. Click Unfreeze in the Freezing pane.

3. Save the Web service configuration.
4

In Project Builder, delete the corresponding component.

Select the component under the Web Components group.

a
b. Choose Edit > Delete.

c. In the Delete References dialog, click Delete References & Files.
d. In the Finder, delete the corresponding .wo file from the project’s directory.
Unfreezing Operations 59

Preliminary © Apple Computer, Inc. November 2002

CHAPTETR 6

Developing Direct to Web Services Applications

Dynamic Custom Operations

“Freezing Operations” (page 53) indicated that when you freeze an operation, the
operation’s WSDL document as well as its parameters and return values are cannot
be customized using Web Services Assistant.

You can create custom operations whose WSDL document is dynamic. For that you
need to copy the templates/D2WSOperation.pbfiletemplate to /Developer/
ProjectBuilder Extras/File Templates/WebObjects.

Follow these steps to create an operation with a dynamic WSDL document:

1. Create an operation in Web Services Assistant.

0 New Operation

Name: Logln

Entity: | Listing ~)
Type: | search ,v]
Services: Service Name

HouseSearch
WODefaultWebService

Cancel oK

2. Save the Web service configuration in Web Services Assistant and close the Web
Services Assistant window.

3. InProject Builder, select the Web Components group and add a D2WSOperation
component with the same name of the operation added in Web Services
Assistant.

To confirm that the component’s invoke method is invoked, edit the invoke
method of its Java file so that it like this:

public Object invoke() {
System.out.printin("LogIn operation invoked.");

60 Dynamic Custom Operations
Preliminary © Apple Computer, Inc. November 2002

CHAPTER 6

Developing Direct to Web Services Applications

return super.invoke();

}

4. Add the following rule to the user.d2wmode] file:

LHS: (operationName = 'Logln")
Key: operationClassName

Value: "LogIn"

Priority: 100

Save user.d2wmodel.
Rebuild and run the application.

Connect to the application using Web Services Assistant.

® N o @

Builder’s Run pane).

Dynamic Custom Operations
Preliminary © Apple Computer, Inc. November 2002

Test the operation. Make sure that you see the test output in the console (Project

61

CHAPTETR 6

Developing Direct to Web Services Applications

62 Dynamic Custom Operations
Preliminary © Apple Computer, Inc. November 2002

	Web Services
	Contents
	About This Book
	Introduction to Web Services
	What Are Web Services?
	Web Service Discovery
	Axis

	Web Service Essentials
	Web Services and SOAP
	Ingredients of a SOAP Message
	Web Service Description

	Axis Basics
	The Axis SOAP Engine
	Serialization and Deserialization of Objects

	Developing Web Services
	Providing a Calculator Web Service
	Using the Calculator Web Service
	Using Sessions
	Adding Web Service Support to Existing Projects

	Developing Direct to Web Services Applications
	The Data Model
	Creating the Project
	Web Services Assistant
	Adding a Custom Web Service
	Adding an Operation
	Testing an Operation
	Using WODefaultWebService Operations
	Observing SOAP Messages Using TCPMonitor
	Freezing Operations
	Unfreezing Operations
	Dynamic Custom Operations

