

I n s i d e W e b O b j e c t s

WebObjects Overview

For WebObjects 5.2

November 2002

 Apple Computer, Inc.
© 2000–2002 Apple Computer, Inc.
All rights reserved.
No part of this publication may be
reproduced, stored in a retrieval
system, or transmitted, in any form or
by any means, mechanical, electronic,
photocopying, recording, or
otherwise, without prior written
permission of Apple Computer, Inc.,
with the following exceptions: Any
person is hereby authorized to store
documentation on a single computer
for personal use only and to print
copies of documentation for personal
use provided that the documentation
contains Apple’s copyright notice.
The Apple logo is a trademark of
Apple Computer, Inc.
Use of the “keyboard” Apple logo
(Option-Shift-K) for commercial
purposes without the prior written
consent of Apple may constitute
trademark infringement and unfair
competition in violation of federal
and state laws.
No licenses, express or implied, are
granted with respect to any of the
technology described in this book.
Apple retains all intellectual property
rights associated with the technology
described in this book. This book is
intended to assist application
developers to develop applications
only for Apple-labeled or
Apple-licensed computers.
Every effort has been made to ensure
that the information in this document
is accurate. Apple is not responsible
for typographical errors.
Apple Computer, Inc.
1 Infinite Loop
Cupertino, CA 95014
408-996-1010
Apple, the Apple logo, Cocoa, Mac,
and
WebObjects are trademarks of Apple
Computer, Inc., registered in the
United States and other countries.
Enterprise Objects is a trademark of
NeXT Software, Inc., registered in the
United States and other countries.

Java and all Java-based marks are
trademarks or registered trademarks
of Sun Microsystems, Inc. in the
United States and other countries.
Simultaneously published in the
United States and Canada.

Even though Apple has reviewed this
manual, APPLE MAKES NO
WARRANTY OR REPRESENTATION,
EITHER EXPRESS OR IMPLIED, WITH
RESPECT TO THIS MANUAL, ITS
QUALITY, ACCURACY,
MERCHANTABILITY, OR FITNESS
FOR A PARTICULAR PURPOSE. AS A
RESULT, THIS MANUAL IS SOLD “AS
IS,” AND YOU, THE PURCHASER, ARE
ASSUMING THE ENTIRE RISK AS TO
ITS QUALITY AND ACCURACY.

IN NO EVENT WILL APPLE BE LIABLE
FOR DIRECT, INDIRECT, SPECIAL,
INCIDENTAL, OR CONSEQUENTIAL
DAMAGES RESULTING FROM ANY
DEFECT OR INACCURACY IN THIS
MANUAL, even if advised of the
possibility of such damages.

THE WARRANTY AND REMEDIES SET
FORTH ABOVE ARE EXCLUSIVE AND
IN LIEU OF ALL OTHERS, ORAL OR
WRITTEN, EXPRESS OR IMPLIED. No
Apple dealer, agent, or employee is
authorized to make any modification,
extension, or addition to this warranty.

Some states do not allow the exclusion or
limitation of implied warranties or
liability for incidental or consequential
damages, so the above limitation or
exclusion may not apply to you. This
warranty gives you specific legal rights,
and you may also have other rights which
vary from state to state.

3

 Apple Computer, Inc. November 2002

Contents

Figures, Listings, and Tables 7

Chapter 1

About This Document

11

Why Read This Document 11
Further Investigations 13

Chapter 2

Introduction

15

Dynamic Web Publishing 15
Client-Server Applications 18

Web Applications 18
Desktop Applications 19

Web Services 21
Rapid Development 23

Direct to Web 23
Direct to Java Client 24
Direct to Web Services 24

The WebObjects Advantage 25
Streamlined Database Access 25
Separation of Presentation Logic, Business Logic, and Data 25
State Management 26
Modular Development 26
Pure Java 26
Scalability and Performance 27

Chapter 3

Enterprise Objects

29

What Is an Enterprise Object Class? 29
Enterprise Objects and the Model-View-Controller Paradigm 32
Mapping Data Entities to Database Tables 33

4

 Apple Computer, Inc. November 2002

C O N T E N T S

WebObjects Support for Enterprise-Object Instances 35
The Enterprise Objects Advantage 38

Chapter 4

Web Applications

41

Web Applications—A Programmer’s View 41
Separating Presentation Code From Event Handling Logic 42
Separating Presentation Code From Business Logic 43
Dynamic Elements 44
Reusing Web Components 45
Maintaining State 46

Web Application Architecture 46
Developing a Web Application 48

Project Builder 48
WebObjects Builder 49

Guidelines for Choosing the Web Application Approach 51
The Direct to Web Approach 51
Direct to Web Architecture 59
Developing a Direct to Web Application 61

The Web Assistant 62
Advanced Customization of Direct to Web Applications 64

Advantages of the Direct to Web Approach 65
Limitations of Direct to Web 66
Choosing a Web Application Development Approach 67

Chapter 5

Desktop Applications

69

Java Client Features 70
Better User Experience 71
Object Distribution 71
The Best of WebObjects 71
Rapid Application Development 72

When to Use Java Client 72
Two Approaches to Java Client 75
Java Client Architecture 77

Desktop User Interface 81

C O N T E N T S

5

 Apple Computer, Inc. November 2002

Data Synchronization Between Client and Server 81
Java Client and Other Multitier Systems 83
Developing a Java Client Application 85

Designing Enterprise Objects for Java Client 85
Creating the User Interface—Java Client Approach 86
Customizing the User Interface—Direct to Java Client Approach 87

Choosing a Desktop Application Development Approach 89

Chapter 6

Web Services Applications

91

Providing Web Services 91
A Sophisticated Calculator 92
Publishing the Calculator Class as a Web Service 93

Web Services Description Language 93
Consuming Web Services 97
Direct to Web Services 104

Developing a Direct to Web Services Application 104
Consuming Services Provided by a Direct to Web Services Application 109

Choosing a Web Service Development Approach 114

Chapter 7

J2EE Support

115

Enterprise JavaBeans 116
JavaServer Pages and Servlets 117
Java Naming and Directory Interface 117

Chapter 8

Choosing Your Approach

119

Internet and Intranet Deployment 119
User Interface Requirements 120

Rich Widget Selection and Fast Response Times 120
Specific Layout and Flow Requirements 121

Rapid Development Considerations 121
Combining Approaches 122
Summary 123
Where to Go From Here 124

6

 Apple Computer, Inc. November 2002

C O N T E N T S

Appendix A

Document Revision History

125

Glossary

127

Index

133

7

 Apple Computer, Inc. November 2002

Figures, Listings, and Tables

Chapter 2

Introduction

15

Figure 2-1 A static website 16
Figure 2-2 A dynamic publishing website 17
Figure 2-3 Java Client applications in action 20
Figure 2-4 A dynamic publishing website using Web services 22
Figure 2-5 Multiple instances of two applications 28

Chapter 3

Enterprise Objects

29

Figure 3-1 Connecting enterprise objects to data and the user interface 31
Figure 3-2 Mapping between an enterprise-object class and a database

table 34
Figure 3-3 Mapping relationships 35
Figure 3-4 Implementing business logic in enterprise-object classes 38
Figure 3-5 Implementing business logic in the application 39
Figure 3-6 Implementing business logic in the database 40

Chapter 4

Web Applications

41

Figure 4-1 The files of a Web component 43
Figure 4-2 How enterprise-object instances relate to a Web component 44
Figure 4-3 Web application communication chain 47
Figure 4-4 Project Builder 49
Figure 4-5 WebObjects Builder 50
Figure 4-6 A login page 52
Figure 4-7 A query-all page 53
Figure 4-8 A query page 54
Figure 4-9 A list page 55
Figure 4-10 An edit page 56
Figure 4-11 An edit-relationship page 57
Figure 4-12 The toolbar 58

8

 Apple Computer, Inc. November 2002

F I G U R E S , L I S T I N G S , A N D T A B L E S

Figure 4-13 A Neutral-look page 58
Figure 4-14 A WebObjects-look page 59
Figure 4-15 Determining attributes from the entity 60
Figure 4-16 The Direct to Web rule system 61
Figure 4-17 The Web Assistant 62
Figure 4-18 The Entities pane of the Web Assistant 63
Figure 4-19 Rule Editor 64
Table 4-1 Some dynamic elements 45

Chapter 5

Desktop Applications

69

Figure 5-1 A Java Client application 70
Figure 5-2 A typical Java Client application 76

When to Use Java Client 72
Figure 5-4 Java Client’s distributed, multitier architecture 78
Figure 5-5 Architecture of a Java Client application 79
Figure 5-6 Architecture of a Direct to Java Client application 80
Figure 5-7 Data flow in a Java Client application 82
Figure 5-8 Composing a user interface with Interface Builder 87
Figure 5-9 Direct to Java Client Assistant tool 88
Table 5-1 Comparison of Java Client and Direct to Java Client 90

Chapter 6

Web Services Applications

91

Figure 6-1 Web page that uses the Calculator Web service 101
Figure 6-2 Web component that lays out user interface elements for the Web

Calculator application 102
Figure 6-3 Data model with the Listing entity 105
Figure 6-4 Defining an operation’s parameters with the Web Services

Assistant 106
Figure 6-5 Adding return values to an operation in the Web Services

Assistant 107
Figure 6-6 Testing the findListingsByAskingPrice operation with the Web

Services Assistant test client 108
Figure 6-7 Console output of simple Web service client project 113
Figure 6-8 User interface of Web service client application 114

F I G U R E S , L I S T I N G S , A N D T A B L E S

9

 Apple Computer, Inc. November 2002

Listing 6-1 Calculator.java class 92
Listing 6-2 WSDL document for the Calculator Web service 94
Listing 6-3 CalculatorClient.java class 98
Listing 6-4 Business logic behind Web Calculator’s user interface 102
Listing 6-5 Application.java class in simple Web service consumer

project 109
Listing 6-6 ServiceClient.java class in simple Web service client project 110

Chapter 8

Choosing Your Approach

119

Table 8-1 Development approaches for WebObjects applications 123

Appendix A

Document Revision History

125

Table A-1 Document revision history 125

10

 Apple Computer, Inc. November 2002

F I G U R E S , L I S T I N G S , A N D T A B L E S

Why Read This Document

11

 Apple Computer, Inc. November 2002

C H A P T E R 1

1 About This Document

WebObjects is an application server with tools, technologies, and capabilities to
create Internet and intranet applications. It has an object-oriented architecture that
promotes quick development of reusable Web components. WebObjects is
extremely scalable and supports high transaction volumes.

This document introduces the architecture, technologies, development tools, and
development approaches of WebObjects to developers and others interested in how
WebObjects works.

Why Read This Document

This document is written for developers who want to start using WebObjects.
However, anyone interested in WebObjects technology will benefit from reading
this document.

This document does not assume you have a background in object-oriented
programming. However, WebObjects is based on object-oriented frameworks
written in Java, an object-oriented language. You should be familiar with
object-oriented programming if you intend to write WebObjects applications.

A hallmark advantage of WebObjects is the database connectivity it provides. To
fully appreciate this technology, you should have some understanding of
databases, although this document doesn’t require it.

12

Why Read This Document

 Apple Computer, Inc. November 2002

C H A P T E R 1

About This Document

Because WebObjects provides several distinct approaches to developing
applications, this document discusses them one by one, and compares their pros
and cons to help you decide which approach is appropriate for your application. In
addition, you can take advantage of Web services using these approaches, enabling
a new and exiting avenue for interapplication communication.

This document has the following chapters:

�

Chapter 2, “Introduction” (page 15), introduces the technologies of WebObjects
and how they fit together.

�

Chapter 3, “Enterprise Objects” (page 29), explains how Enterprise Object
technology allows you to think of your data as entities with customizable
behavior instead of database tables with rows and columns.

�

Chapter 4, “Web Applications” (page 41), covers the approach that allows you
to create applications with a Web browser–based user interface.

�

Chapter 5, “Desktop Applications” (page 69), discusses the approach with
which you can produce a graphical user interface application that runs on a
client computer.

�

Chapter 6, “Web Services Applications” (page 91), addresses the addition of
Web service support in your applications, both by providing Web services and
consuming them.

�

Chapter 7, “J2EE Support” (page 115), explains how WebObjects implements
some aspects of Sun’s Java 2 Platform, Enterprise Edition (J2EE), including
Enterprise JavaBeans, JavaServer Pages (JSP), servlets, and Java Naming and
Directory Interface (JNDI).

�

Chapter 8, “Choosing Your Approach” (page 119), summarizes the pros and
cons of these approaches and outlines the process you should go through when
deciding which approach or combination of approaches is appropriate for a
particular application.

�

Appendix A, “Document Revision History” (page 125), lists the revisions made
to this document.

C H A P T E R 1

About This Document

Further Investigations

13

 Apple Computer, Inc. November 2002

Further Investigations

This document serves as a starting point. It surveys the technologies of WebObjects
without providing the details. This section lists sources of WebObjects information
available to you.

When you install the WebObjects Developer package on your computer, the
Installer puts developer documentation into the following locations:

�

Frameworks.

 Information inextricably associated with a framework is usually
installed in a subdirectory of the framework. This method of packaging ensures
that the documentation moves with the framework when it is moved (or is
copied) to another location. It also makes it possible to have localized versions
of the documentation (although development and deployment tools are
localized for English only).

�

Development tools.

 Help information for applications such as Project Builder
and Interface Builder is installed with the application. When users request it
from the Help menu, the application launches Help Viewer to display it.

�

Example code.

 A variety of sample programs are installed in

/Developer/
Examples/JavaWebObjects

 (

$NEXT_ROOT/Developer/Examples/JavaWebObjects

 on
Windows 2000) showing you how to perform common tasks using WebObjects.

�

All information that is not specific to frameworks or development applications
is installed in

/Developer/Documentation/WebObjects

 (

$NEXT_ROOT/
Documentation/Developer

 on Windows 2000).

To access the developer documentation on Mac OS X, you open the

webobjects.html

file in your Web browser. This file is located in

/Developer/Documentation/
WebObjects

.

To access the developer documentation on Windows 2000, you use WOInfoCenter.
To access the WOInfoCenter, choose Start > Program > WebObjects >
WOInfoCenter.

You can also find WebObjects documentation and resources at http://
developer.apple.com/webobjects

http://developer.apple.com/webobjects
http://developer.apple.com/webobjects

14

Further Investigations

 Apple Computer, Inc. November 2002

C H A P T E R 1

About This Document

Dynamic Web Publishing

15

 Apple Computer, Inc. November 2002

C H A P T E R 2

2 Introduction

From an information-technology perspective, WebObjects is a scalable,
high-availability, high-performance application server. From the viewpoint of a
developer, though, WebObjects is an extensible object-oriented platform upon
which you can rapidly develop and deploy applications that integrate existing data
and systems. WebObjects allows you to build applications that leverage the
connectivity that the Internet or an intranet provide using the client-server
paradigm.

The Web was created to simplify access to electronically published documents.
Originally just static text pages with hyperlinks to other documents, Web pages
quickly evolved into highly graphical animated presentations. Along the way, a
degree of interactivity was introduced, allowing people browsing the Web to fill out
forms and thereby supply data to the server.

WebObjects allows you to take the next logical step. With it, you can produce
full-fledged applications for use either across the Internet or within a corporate
intranet. These applications can be Web-based, and thus accessible through a Web
browser, or can have the full interactivity of a stand-alone desktop application.

Dynamic Web Publishing

Much of the content on the Web is textual or graphical material that doesn’t change
much over time. However, there is increasing demand for sites that publish
ever-changing data: breaking news stories, up-to-the-minute stock quotes, or the
current weather are good examples.

16

Dynamic Web Publishing

 Apple Computer, Inc. November 2002

C H A P T E R 2

Introduction

A typical website is organized like the one in Figure 2-1. A user’s Web browser
requests pages using Uniform Resource Locators (URLs). These requests are sent
over the network to the Web server, which analyzes each request and selects the
appropriate Web page to return to the user’s browser. This Web page is simply a
text file that contains HTML code. Using the HTML tags embedded within the file
received from the HTTP server, the browser renders the page.

Figure 2-1

A static website

Static websites are easy to maintain. There are a number of tools in the market that
allow you to create Web pages with a relatively small amount of effort. And, as long
as the content of your pages doesn’t change too often, it isn’t difficult to keep them
up-to-date. Dynamic websites, however, are a different situation. Without
WebObjects, it would require many resources to stay up-to-date.

WebObjects is designed to allow you to quickly and easily publish dynamic data
over the Web. You create Web page templates that indicate where on the Web page
the dynamic data is to be placed. WebObjects fills in the content when the page
needs to be generated in response to a request. The process is much like a mail
merge. The information your applications publish can reside in a database or other
data-storage medium or it can be generated at the time a page is accessed. The pages
are also highly interactive—you can fully specify the way the user navigates
through them.

C H A P T E R 2

Introduction

Dynamic Web Publishing

17

 Apple Computer, Inc. November 2002

Figure 2-2 shows a WebObjects-based website. Again, the request (in the form of a
URL) originates with a Web browser. If the Web server detects that the request is to
be handled by a WebObjects application, it passes the request to an HTTP adaptor.
The adaptor packages the incoming request in a form the WebObjects application
can understand and forwards it to the application. Based upon Web page templates
you define and the relevant data from the data store, the application generates a
Web page that it passes back through the adaptor to the Web server. The Web server
sends the page to the Web browser, which renders it.

Figure 2-2

A dynamic publishing website

18

Client-Server Applications

 Apple Computer, Inc. November 2002

C H A P T E R 2

Introduction

This type of WebObjects application is referred to as “Web-based,” since the result
is a series of dynamically generated Web pages.

Instead of using an HTTP adaptor, you can deploy applications through servlet
containers. This approach allows you to take advantage of your servlet container’s
application deployment facilities. For more information on this approach, see
“JavaServer Pages and Servlets” (page 117).

Client-Server Applications

Although the majority of websites primarily publish static data, the number of sites
that publish dynamic content is growing rapidly. Many corporations use intranets,
the Internet, or both to provide easy access to applications and data. Online stores
selling books, music, or computers are examples of an Internet client-server
application.

Client-server applications offer huge advantages over traditional applications.
Users don’t have to install the application on a client computer, which not only
saves client disk space but ensures that the user always has the most up-to-date
version of the application. Also, the client computers can be Macs, PCs, or anything
that can run a Web browser with the necessary capabilities.

WebObjects allows you to develop two different types of Internet applications: Web
applications and Java Client applications. Web applications are analogous to
Common Gateway Interface (CGI) applications and consist of dynamically
generated Web pages accessed through a Web browser. Java Client moves part of
your application to the client-side computer and enlists Sun’s Java Foundation
Classes (JFC) to give it the complete user interface found in a more traditional
desktop application.

Web Applications

When you need to develop a Web application, you can create it quickly and easily
with the WebObjects development tools. WebObjects provides many elements that
you can use to build your Web application’s interface. These elements range from
simple user interface widgets (for example, submit buttons, checkboxes, and tables)
to elements that provide for the conditional or iterative display of content.

C H A P T E R 2

Introduction

Client-Server Applications 19
 Apple Computer, Inc. November 2002

You can also define Web components. These are Web page templates that you can
use to define your Web applications’ design. Web components can contain any of
the layout elements mentioned earlier as well as other Web components. For
example, you can create a toolbar component that provides a link to your main
website and to a search Web page. Then, as you create other components, you
include the toolbar component in them. When you develop a support page for your
website that you want all the other other components to use, the toolbar component
is the only place you need to add a link to it.

Web components encapsulate more than the layout of a Web page. They also
encompass a Java file that links the component’s elements and subcomponents into
a coherent entity. You put application-specific business logic in the Java class of a
Web component.

For more information on Web applications, see “Web Applications” (page 41).

Desktop Applications
When you need the fast and full-featured user interface of desktop client-server
applications, you can partition your application so that a portion of it—including all
or part of the user interface logic—runs in Java directly on the client. Client-server
communication is handled by WebObjects. WebObjects applications that are
partitioned in this way are known as Java Client applications.

Java Client distributes the objects of your WebObjects application between the
application server and one or more clients—typically Java applications. It is based
on a distributed multitier client-server architecture where processing duties are
divided between a client, an application server, a database server, and a Web server.
With a Java Client application, you can partition business objects containing
business logic and data into a client side and a server side. This partitioning can
improve performance and at the same time help to secure legacy data and business
rules.

Figure 2-3 illustrates a Java Client application in which the client portion is running
as an application installed on the user’s computer. Java Client applications, just like
Web applications, can communicate with the application server using HTTP
requests. In addition, Java Client passes objects between a portion of your
application residing on the user’s computer and the portion of your application that
remains on the application server.

20 Client-Server Applications
 Apple Computer, Inc. November 2002

C H A P T E R 2

Introduction

Figure 2-3 Java Client applications in action

Java Client allows your application to look and feel like a traditional desktop
application and still take full advantage of the power of WebObjects.

For more information on desktop applications, see “Desktop Applications”
(page 69).

C H A P T E R 2

Introduction

Web Services 21
 Apple Computer, Inc. November 2002

Web Services

Web services is an innovative implementation of distributed computing.
WebObjects allows you to expose class methods as Web service operations. Web
services provide an efficient way for applications to communicate with each other.
Based on Simple Object Access Protocol (SOAP) messages that wrap Extensible
Markup Language (XML) documents, Web services provide a flexible
infrastructure that leverages the ubiquitous HTTP (or HTTPS) over TCP/IP. This
means that your organization probably has all the hardware and software
infrastructure needed to deploy Web services.

But Web services provide more than an information-exchange system. When an
application implements some of its functionality using Web services, it becomes
more than the sum of its parts. For example, you can create a Web service operation
that uses a Web service operation from another provider to give its consumers (also
known as service requestors) information tailored to their needs. Web service
operations are similar to the methods of a Java class; a provider is an entity that
publishes a Web service, while the entities that use the Web service are called
consumers.

Web applications as well as Java Client applications can take advantage of Web
services. Figure 2-4 shows a dynamic-publishing website that uses Web services.

22 Web Services
 Apple Computer, Inc. November 2002

C H A P T E R 2

Introduction

Figure 2-4 A dynamic publishing website using Web services

For more information on Web service applications, see “Web Services
Applications” (page 91).

C H A P T E R 2

Introduction

Rapid Development 23
 Apple Computer, Inc. November 2002

Rapid Development

WebObjects provides power and flexibility. A certain degree of complexity,
however, accompanies these features. For many applications, whether Web-based
or Java Client–based, it’s more important to develop the application quickly than
strive for maximum customization. As an example, a simple data-browsing and
editing application, intended only for internal use by a system administrator,
probably wouldn’t warrant the same degree of effort you would put into an
application accessible by the general public. To simplify the development of
applications like the former, WebObjects includes a set of rapid-development
technologies: Direct to Web, Direct to Java Client, and Direct to Web Services.

These three technologies are similar in approach. Their primary difference is the
type of application that gets generated by each: a Web application by Direct to Web,
a Java Client application by Direct to Java Client, and a Web services application by
Direct to Web Services. These technologies use a data model as the base upon which
an application is created (in the case of Direct to Web Services, an application
capable of providing or consuming Web services). In addition, they are useful not
only for creating simple data-browsing applications or Web services, but in many
situations can also serve as rapid prototyping tools. Because they allow
customization on various levels, they are well-suited for creating your critical
applications.

Direct to Web
Direct to Web is a system for creating Web applications that access a database. All
Direct to Web needs to create the application is a model of the database, which you
can build using EOModeler (a data-modeling application).

Direct to Web uses information from a data model to dynamically generate Web
pages. Consequently, you can modify your application’s configuration at runtime—
using the Web Assistant—to hide objects of a particular class, hide their properties,
reorder properties, and change the way they are displayed without recompiling or
relaunching the application.

24 Rapid Development
 Apple Computer, Inc. November 2002

C H A P T E R 2

Introduction

Out of the box, Direct to Web generates Web pages for nine common database tasks,
including querying, editing, and listing. To do this, Direct to Web uses a
task-specific component called a template that can perform the task on any entity.
The templates, in conjunction with a set of rules (which you can customize), are the
essential elements of a Direct to Web application.

A Direct to Web application is highly customizable. For example, you can change
the appearance of the standard templates, mix Web components with Web pages
generated by Direct to Web, and create custom Web components and Direct to Web
templates that implement specialized behavior.

For more information on Direct to Web, see “The Direct to Web Approach”
(page 51).

Direct to Java Client
Like Direct to Web, Direct to Java Client generates a user interface for common
database tasks using rules to control program flow and provides an assistant that
allows you to modify your applications at runtime. But the applications produced
by Direct to Java Client have rich desktop-class user interfaces. In addition, Java
Client applications can take advantage of the processing power of the client
computer to perform operations such as sorting a list of items received from
the server.

For more information on Direct to Java Client, see “Two Approaches to Java Client”
(page 75).

Direct to Web Services
Direct to Web Services allows you to create a Web service that lets its clients access
data in your data store by invoking Web service operations. Although this approach
is similar to Direct to Web and Direct to Java Client in its use of a data model and
rule sets, the target users for Web service applications are other applications,
not people.

You use the Web Services Assistant to determine which data entities are accessible
by your Web service clients and the type of operations they can execute on them,
such as search, insert, delete, and update. You accomplish this without writing a
single line of code.

C H A P T E R 2

Introduction

The WebObjects Advantage 25
 Apple Computer, Inc. November 2002

For more information on Direct to Web Services, see “Direct to Web Services”
(page 104).

The WebObjects Advantage

WebObjects provides a number of key technologies that give it a significant
advantage over other application servers.

Streamlined Database Access
Much of the data that is (or could be) presented on the Web already exists in
electronic form. Not only can it be a challenge to create a website or Web application
to present your data using conventional tools, accessing the data itself could be
difficult. Some products rely on manually created or assistant-generated Structured
Query Language (SQL) code, leading to database-specific code that is difficult to
optimize. WebObjects avoids these problems by using Enterprise Objects, a
model-based mechanism for cleanly instantiating business objects directly from
database tables. Enterprise Objects handles all the interactions with the database
including fetching, caching, and saving. This allows you to write your business
logic against actual objects independent of the underlying data store. You can
modify schemas, add or change databases, or even use a totally different storage
mechanism without needing to rewrite your application.

JDBC is an interface between Java platforms and databases. WebObjects
applications can access any database with a JDBC Type 2 or JDBC Type 4 driver.

Separation of Presentation Logic, Business Logic, and
Data
An ideal Web application–development system simplifies maintenance and
encourages code reuse by enforcing a clean separation of presentation (Web pages),
logic (Java code), and data (data store). This modularity is inherent in the
WebObjects programming model, which uses reusable Web components to
generate Web pages directly from enterprise-object instances without the need to
embed scripts or Java code inside the Web pages themselves. A Web component

26 The WebObjects Advantage
 Apple Computer, Inc. November 2002

C H A P T E R 2

Introduction

contains a Web page template, which you—or a professional Web page designer—
can design and edit using standard Web page authoring tools. A component can
also implement custom behavior using a separate Java source file. Neither the
template nor the Java source file includes data-model–specific information.

State Management
The HTTP protocol used on the Web is inherently stateless; that is, each HTTP
request arrives independently of earlier requests, and it is up to Web applications
to determine which of the active users sent it. Therefore, most Web applications of
consequence—as well as some of the more interesting dynamic publishing sites—
need to keep state information, such as login information or a shopping cart,
associated with each user session.

Without using cookies, WebObjects provides objects that allow you to maintain
information for the life of a particular user session, or longer. This makes it
particularly easy to implement an application like a Web-based online store: you
don’t have to do anything special to maintain the contents of the user’s shopping
cart or other data over the life of the session. In addition, your online store could
even monitor customer buying patterns and then highlight items a particular buyer
is likely to be interested in the next time she visits your site.

Modular Development
The power of WebObjects comes from a tightly integrated set of tools and
frameworks, facilitating the rapid assembly of complex applications. At the heart of
this system is Project Builder, an integrated development environment (IDE) that
manages your Java business logic, tracks data models, Web components, and
supporting files. As mentioned earlier, WebObjects also includes powerful
assistants and frameworks that allow the rapid creation of Web or Java Client
applications directly from the database. Advanced developers can tap into the
WebObjects API, allowing virtually unlimited customization and expandability.

Pure Java
WebObjects applications are 100% Pure Java, which means they can be deployed on
any platform with a certified Java 2 virtual machine.

C H A P T E R 2

Introduction

The WebObjects Advantage 27
 Apple Computer, Inc. November 2002

Scalability and Performance
Static websites and traditional client-server applications have one advantage: They
both leverage the power of the client platform, minimizing the load on the server. It
doesn’t take all that much processing power to serve a set of static Web pages.
Dynamic applications, although a tremendous advance over static websites, require
additional server power to quickly access the changing data and construct the Web
pages or Java Client user interface.

The WebObjects application server is both efficient and scalable. With WebObjects,
if more power, reliability, or failover protection is needed, you can run multiple
instances of your application, either on one or on multiple application servers (see
Figure 2-5). You can choose from one of several load-balancing algorithms (or create
your own) to determine which application instance each new user should connect
to. And, either locally or from a remote location, you can analyze site loads and
usage patterns and then start or stop additional application instances as necessary.
Load balancing is a very powerful feature of WebObjects that allows you to add
more server capacity as the need arises without needing to implement a
load-balancing algorithm yourself.

28 The WebObjects Advantage
 Apple Computer, Inc. November 2002

C H A P T E R 2

Introduction

Figure 2-5 Multiple instances of two applications

What Is an Enterprise Object Class? 29
 Apple Computer, Inc. November 2002

C H A P T E R 3

3 Enterprise Objects

As mentioned in “Introduction” (page 15), WebObjects applications gain much of
their usefulness by interacting with a persistent data store, which is usually a
database. In WebObjects, database tables are represented as collections of Java
classes called enterprise-object classes. Enterprise-object classes contain the bulk of
your application’s business logic, the part of the application you write regardless
of which application-development approach you take. For details on the
WebObjects application-development approaches, see “Choosing Your Approach”
(page 119).

This chapter introduces enterprise-object classes, describes how they map to a
database, outlines how WebObjects supports and interacts with them, and presents
the advantages of the Enterprise Objects approach over other techniques. If you are
not acquainted with relational-database operations, you may read the sections
“What Is an Enterprise Object Class?” (page 29), and “The Enterprise Objects
Advantage” (page 38), and skip the rest of the chapter, which is written for those
familiar with relational databases.

For detailed information on Enterprise Object technology, see Inside WebObjects:
Enterprise Objects.

What Is an Enterprise Object Class?

An enterprise-object class is like any other object: It couples data with the methods
for operating on that data. However, an enterprise-object class has certain
characteristics that distinguish it from other classes:

30 What Is an Enterprise Object Class?
 Apple Computer, Inc. November 2002

C H A P T E R 3

Enterprise Objects

� It has properties that map to stored or persistent data; an enterprise-object
instance typically corresponds to a single row or record in a database table.

� It knows how to interact with other parts of WebObjects to give and receive
values for its properties. This is done through a mechanism known as key-value
coding, which enables the setting and getting of these properties.

In addition to providing classes that manage a set of enterprise-object instances in
memory, Enterprise Objects defines an API to which enterprise-object classes must
conform, as well as default implementations of essential methods. As a result, you
only need to concentrate on the parts of your enterprise-object classes specific to
your application.

To maximize the reusability and extensibility of your enterprise-object classes, they
shouldn’t embed knowledge of the user interface or database. For example, if you
embed knowledge of your user interface, you can’t reuse the classes because each
application’s user interface is different. Similarly, if you embed knowledge of your
database, you have to update your classes every time you modify the database’s
schema.

If not in the enterprise-object classes, where does this knowledge go? It’s handled
by using a data model, as shown in Figure 3-1.

C H A P T E R 3

Enterprise Objects

What Is an Enterprise Object Class? 31
 Apple Computer, Inc. November 2002

Figure 3-1 Connecting enterprise objects to data and the user interface

Enterprise Objects provides a database-to-objects mapping, called a model, which
allows enterprise-object classes to be database-engine agnostic. WebObjects has
facilities that let you map the properties of enterprise-object classes to user interface
elements, providing these classes independence from user interface details.

32 Enterprise Objects and the Model-View-Controller Paradigm
 Apple Computer, Inc. November 2002

C H A P T E R 3

Enterprise Objects

This approach allows you to create libraries of enterprise-object classes that can be
used in as many applications as you need, with any user interface, and with any
database engine. Therefore, you can concentrate on coding the logic of your
business while WebObjects takes care of the rest.

For example, you could create an entity called Customer that defines such business
rules as customers must have a work or home phone number, or customers cannot spend
more than their credit limit. Without rewriting your business logic, you could use
these objects in a publicly available application and an internal customer service
application. You could also switch the database that hosts the customer data.

Enterprise Objects and the Model-View-Controller
Paradigm

A common and useful paradigm for object-oriented applications, particularly
business applications, is Model-View-Controller (MVC). Derived from
Smalltalk-80, MVC proposes three types of objects in an application, separated by
abstract boundaries, and communicating with each other across those boundaries.

Model objects represent special knowledge and expertise. For example, model
objects can hold a company’s data and define the logic that manipulates that data.
Model objects are not directly displayed. They are reusable, distributed, persistent,
and portable to a variety of platforms.

View objects represent things visible in the user interface (for example, windows,
buttons, and so on). A view object is ignorant of the data it displays. View objects in
general are reusable, which helps in providing consistency between applications.

Acting as a mediator between model and view objects in an application is the
controller object. There is usually one per application or window. A controller object
communicates data back and forth between model and view objects. Since what a
controller does is very specific to an application, it is generally not reusable even
though it often constitutes much of an application's code.

Because of the controller’s central, mediating role, model objects do not need to
know about the state and events of the user interface, and view objects do not need
to be aware of the programming interfaces of model objects.

C H A P T E R 3

Enterprise Objects

Mapping Data Entities to Database Tables 33
 Apple Computer, Inc. November 2002

From the perspective of this paradigm, enterprise-object classes are model objects.
However, WebObjects also extends the MVC paradigm. Enterprise-object classes
are also independent of the persistent storage mechanism used to store instances of
them. Enterprise-object classes do not need to know anything about the database
that holds their data, and the database doesn’t need to be aware of them, either.

Mapping Data Entities to Database Tables

Enterprise objects make use of a separate file, known as a data model, to specify a
mapping between tables in the database and your data entities. This is formally
called an entity-relationship (ER) model. You use EOModeler to create and
maintain these models. With EOModeler you can

� read the data dictionary from a database to create a default model, which can be
tailored to suit the needs of your application

� define data entities that represent the tables in your database

� define the attributes of each entity; these attributes usually correspond to
columns on a table

� specify relationships between entities and referential integrity rules for these
relationships

� generate source-code files (enterprise-object classes) for the entities you specify

� define fetch specifications (queries) that you can invoke by name in your
applications

� create, modify, or delete tables or databases

A data model represents a level of abstraction above the database. The
database-to-objects mapping embodied in a model sets up a correspondence
between database tables and the model’s entities; frequently, table rows map to
instances of the appropriate data entity, as shown in Figure 3-2.

34 Mapping Data Entities to Database Tables
 Apple Computer, Inc. November 2002

C H A P T E R 3

Enterprise Objects

Figure 3-2 Mapping between an enterprise-object class and a database table

In practice, the mapping is more flexible than this. For example:

� You can map an entity to a single table, a subset of a table, or to more than one
table. For instance, you can map the Person entity’s firstName and lastName
attributes to the PERSON table, while mapping its streetAddress, city, state
and zipCode attributes to the ADDRESS table.

� Generally, an attribute is mapped to a single column, but the
column-to-attribute correspondence is similarly flexible. You can map an
attribute to a derived column, such as price * discount or salary * 12.

� You can map an entity to one or more tables.

In addition to mapping tables to entities and columns to attributes, WebObjects
maps primary-key and foreign-key columns to relationships between objects.
WebObjects defines two types of relationships—to-ones and to-manys—which are
both illustrated in Figure 3-3. The relationship a MovieRole has to its Movie is a
to-one relationship, while the relationship a Movie has to its MovieRoles is a
to-many.

C H A P T E R 3

Enterprise Objects

WebObjects Support for Enterprise-Object Instances 35
 Apple Computer, Inc. November 2002

Figure 3-3 Mapping relationships

WebObjects Support for Enterprise-Object Instances

After an application has accumulated changes to enterprise-object instances and
invokes the saveChanges method, WebObjects analyzes the instances, generates the
necessary database operations (SQL statements), and executes those operations to
synchronize the database with the enterprise-object instances held in memory.

TALENT_ID MOVIE_ROLE MOVIE_ID MOVIE_ID TITLE

MOVIE_ROLE

36 WebObjects Support for Enterprise-Object Instances
 Apple Computer, Inc. November 2002

C H A P T E R 3

Enterprise Objects

Enterprise Objects maintains the integrity of your data as it is transferred between
your application and the data store, without sacrificing performance or flexibility,
by using the following techniques:

Validation
A substantial part of your application’s business logic is usually devoted
to data validation (for example, verifying that customers don’t exceed
their credit limits, the return dates of DVDs don’t come before their
corresponding check-out dates, and so on). In your enterprise-object
classes, you implement methods that check for invalid data, and
WebObjects automatically invokes them before saving anything to the
data store.

Referential-integrity enforcement
In your data model you can specify rules governing the relationships
between entities, such as whether a to-one relationship is optional or
mandatory. You can also specify delete rules—actions that must occur
when an enterprise-object instance is deleted. For example, if you have
a Department entity, you can specify that when instances of it are
deleted, all the related employees in that department are also deleted (a
cascading delete), all the employees in that department are updated to
have no department (nullify), or the department deletion is rejected if it
has any employees assigned to it (deny).

Automatic primary-key and foreign-key generation
You do not need to maintain database artifacts such as primary-key and
foreign-key values in your application; WebObjects keeps track of them
for you. Primary and foreign keys are not usually meaningful parts of a
business model; rather, they’re attributes created in a relational
database to express relationships between entities. Key values can be
generated and propagated automatically.

Transaction management
Most transactions are handled for you, using the native transaction
management features of your database to group database operations
that correspond to the changes that have been made to enterprise-object
instances in memory. You don’t have to worry about beginning,
committing, or rolling back transactions unless you want to fine-tune
transaction-management behavior. WebObjects also provides a separate
in-memory transaction-management feature that allows you to create
nested contexts in which a child context’s changes are folded into the
parent context only after the successful completion of an in-memory
operation.

C H A P T E R 3

Enterprise Objects

WebObjects Support for Enterprise-Object Instances 37
 Apple Computer, Inc. November 2002

Locking
Enterprise Objects offers three types of locking: pessimistic, optimistic,
and on-demand. Pessimistic locking uses your database server’s native
locking mechanism to lock rows as they’re fetched and prevents update
conflicts by never allowing two users to look at the same
enterprise-object instance at the same time. Optimistic locking doesn’t
detect update conflicts until you try to save changes to the database; if a
row has changed since it was originally fetched, the save operation is
cancelled. On-demand locking is a mixture of the other two: it locks a
row after you fetch it but before you attempt to modify it. The lock can
fail for one of two reasons: the row has changed since you fetched it
(optimistic locking), or someone else already has a lock on the row
(pessimistic locking).

Faulting
When WebObjects fetches a row, it creates enterprise-object instances
representing the destinations of the corresponding entity’s
relationships. By default, WebObjects doesn’t immediately fetch data
for the destination objects of relationships, however. Fetching uses
many system resources, and if WebObjects fetched rows related to the
one explicitly asked for, it would also have to fetch the rows related to
those, and so on, until all of the interrelated rows in the database are
retrieved. For many applications, this would waste time and resources.
To avoid this, Enterprise Objects creates empty destination objects,
called faults, that fetch their data the first time they’re accessed. This
process, known as faulting, is automatic.

Uniquing
In matching relational databases to object-oriented programming, one
of the key requirements is that a row in the database be associated with
only one enterprise-object instance in a given context in your
application. Enterprise Objects maintains the mapping of each
enterprise-object instance to its corresponding table row, and uses this
information to ensure that, within a given context, your object set does
not include two (possibly inconsistent) objects for the same row.
Uniquing of enterprise-object instances, as this process is called, reduces
memory usage and allows you to know with confidence that the object
you’re interacting with represents the true state of its associated row as
it was last fetched.

38 The Enterprise Objects Advantage
 Apple Computer, Inc. November 2002

C H A P T E R 3

Enterprise Objects

The Enterprise Objects Advantage

A hallmark feature of WebObjects, especially in comparison to other solutions, is
the separation of the business logic from the database and the user interface. In
WebObjects, you put the business logic in the enterprise-object classes, as shown in
Figure 3-4.

Figure 3-4 Implementing business logic in enterprise-object classes

Another approach (Figure 3-5) is to implement business logic in the application.

.................

........
........

.

C H A P T E R 3

Enterprise Objects

The Enterprise Objects Advantage 39
 Apple Computer, Inc. November 2002

Figure 3-5 Implementing business logic in the application

The Enterprise Objects approach betters this approach in the following ways:

� It offers greater reuse. In WebObjects, you code your business logic once, and
each application that accesses your database can use it. You don’t have to mix
the business logic code that deals with data entities with the code that manages
an application’s user interface.

� It’s more maintainable. With WebObjects, you don’t have to duplicate your
business logic. Thus, you can make substantial changes to your business rules
easily without resorting to finding and fixing every affected page in every
affected application. You can also easily track changes to your schema.

� It improves data integrity. With WebObjects, you don’t need to rely on all
application developers to implement the business rules correctly. If one
application has an error, it is less likely to corrupt your database.

� It scales better. With WebObjects, you can improve your application’s
performance without having to provide its users with faster systems. Instead,
you can simply move some computation-intensive processing to fast computers.

A different approach (Figure 3-6) is to implement your business logic in the
database—with stored procedures, rules, constraints, and triggers, for example.

40 The Enterprise Objects Advantage
 Apple Computer, Inc. November 2002

C H A P T E R 3

Enterprise Objects

Figure 3-6 Implementing business logic in the database

The Enterprise Objects approach betters this approach in the following ways:

� It offers improved interactivity. If you implement your business rules in the
database, you need to make a round trip to the database every time the user
performs an action. Alternatively, you can batch database changes, which
prevents the user from receiving immediate feedback. WebObjects applications
show changes to the user immediately, but the database is accessed only when
saving these changes or fetching additional data.

� It improves back-end portability. Database vendors have different ways of
implementing logic. If you have to support more than one database and you’re
using WebObjects, you don’t have to implement the logic multiple times and,
thus, suffer maintenance problems.

� Java is a good development language. With WebObjects, you program in Java,
an industrial-strength, object-oriented language. The programmable variants of
SQL usually have some object-oriented features, but are essentially procedural
languages.

Data store

Web Applications—A Programmer’s View 41
 Apple Computer, Inc. November 2002

C H A P T E R 4

4 Web Applications

The Web application approach allows you to create applications that dynamically
generate Web pages based on Web page templates. WebObjects provides graphical
tools, user interface elements, and a set of extensible frameworks with which you
can develop elaborate applications. This chapter describes how you develop a Web
application project, the advantages of using this approach, and what the
development process is like. It also covers Direct to Web, the rule-based
application-development approach that generates Web pages based on a data
model and the tasks the user is allowed to perform.

For an in-depth discussion of Web application development, see Inside WebObjects:
Web Applications and Inside WebObjects: Developing Applications With Direct to Web.

Web Applications—A Programmer’s View

The following features of WebObjects ease the development of Web applications:

� The presentation code and the business logic of Web components reside in
separate files. A Web component represents a Web page and consists of
separate files for presentation logic (HTML file) and business logic (Java class).

� Your presentation code remains separate from your business logic.
Enterprise-object classes, discussed in “Enterprise Objects” (page 29), contain all
your business logic. This allows you to reuse business logic in multiple Web
pages and even different applications.

� WebObjects provides dynamic versions of static HTML elements. These are
called dynamic elements.

42 Web Applications—A Programmer’s View
 Apple Computer, Inc. November 2002

C H A P T E R 4

Web Applications

� You can reuse HTML and Java code. Web components can be embedded within
other Web components as if they were dynamic elements.

� WebObjects automatically maintains state information. WebObjects
overcomes the inherent statelessness of HTTP and maintains session state (like
a shopping cart) and application state (like application statistics).

These advantages are discussed in more detail in the sections that follow.

Separating Presentation Code From Event Handling
Logic
In WebObjects, a Web page is represented by a Web component, an object that has
both content and behavior. A Web component can also represent a portion of a page
but usually represents an entire page.

A Web component consists of these files:

� A Web page template that specifies how the component looks. This file can be
edited by any HTML editor or text editor.

� Event-handling logic that specifies how the component acts. You specify this
with a standard Java source file.

� Bindings that associate the component’s presentation (HTML code) with its
event-handling methods. These bindings are stored in a WebObjects data
(WOD) file, which uses a simple, text-based format.

Separating the presentation code, event-handling logic, and bindings makes it
much easier to maintain a Web application. A graphic artist can modify the
presentation code, thus modifying the appearance of a page, without breaking its
event-handling logic. A programmer can completely rewrite the event-handling
logic without accidentally changing the Web page’s layout.

You do not need to edit all three files separately. WebObjects Builder, a graphical
Web component-editing application, allows you to edit the HTML, WOD, and Java
files simultaneously, relieving you of having to manually synchronize them.
WebObjects Builder is described in more detail in “WebObjects Builder” (page 49).

Figure 4-1 shows the three files in an example Web component.

C H A P T E R 4

Web Applications

Web Applications—A Programmer’s View 43
 Apple Computer, Inc. November 2002

Figure 4-1 The files of a Web component

Separating Presentation Code From Business Logic
Enterprise-object classes encapsulate an application’s business logic and provide an
interface to a data store. Since enterprise-object instances are regular objects, they
can appear as variables in Web components, sessions, or the application object. A
component’s bindings (WOD) file relates the component’s enterprise-object
instances to its dynamic elements. Figure 4-2 shows how an enterprise-object
instance is related to a Web component in a Web application.

44 Web Applications—A Programmer’s View
 Apple Computer, Inc. November 2002

C H A P T E R 4

Web Applications

Figure 4-2 How enterprise-object instances relate to a Web component

Dynamic Elements
The Web page template file in Figure 4-1 looks like any other HTML file except for
the WEBOBJECT element. In this example, the element represents a dynamic element.
Dynamic elements are the essential building blocks of a Web application. They link
user interface elements with data and behavior. A dynamic element appears in the

.......
....

...........

.......
....

...........

C H A P T E R 4

Web Applications

Web Applications—A Programmer’s View 45
 Apple Computer, Inc. November 2002

template as a <WEBOBJECT> tag with a corresponding </WEBOBJECT> tag. Some
dynamic elements have no HTML counterpart; WORepetition and WOConditional
are examples. Table 4-1 lists some of the commonly used dynamic elements.

Reusing Web Components
You can embed a Web component within another Web component. For example, a
component might represent only the header or the footer of a page; you can nest it
inside of a component that represents the rest of the page. A component designed
to be nested within another component is called a reusable component, a shared

Table 4-1 Some dynamic elements

Element Name Description

WOBrowser Selection list that displays multiple items.

WOCheckBox Checkbox.

WOConditional Determines whether a portion of the Web component (or Web
page) is generated.

WOForm Container element that generates a fill-in form.

WOHyperlink Generates a hypertext link.

WOImage Displays an image.

WORadioButton Toggle switch.

WORepetition Container element that repeats its contents (that is, everything
between the <WEBOBJECT...> and </WEBOBJECT...> tags in the
Web page–template file) a given number of times.

WOResetButton Button that clears a form.

WOString Dynamically generated string.

WOSubmitButton Submit button.

WOText Multiline field for text input and display.

WOTextField Single-line field for text input and display.

46 Web Application Architecture
 Apple Computer, Inc. November 2002

C H A P T E R 4

Web Applications

component, or a subcomponent. Like dynamic elements, reusable components
appear in the Web page template as a WEBOBJECT element, allowing you to extend
WebObjects’s repertoire of dynamic elements.

WebObjects provides several reusable Web components like tables, radio button
matrices, tabbed panes, and collapsible content. In addition, Direct to Web provides
reusable components for editing, listing, selecting, inspecting, and querying
enterprise-object instances.

Maintaining State
In addition to the Web components, a running Web application can have a number
of sessions and an application object.

A session represents a period during which a user is accessing your application.
Because users on different client computers (or multiple Web browser windows)
may be accessing your application at the same time, a single application typically
hosts more than one session at a time. Session objects encapsulate the state of a
single session. These objects persist beyond the HTTP request-response cycle, and
store (and restore) the pages of a session, the values of session variables, and any
other state that Web components need to persist throughout a session. In addition,
each session has its own copy of the components that the user has requested.

Session variables can be used in shopping cart applications to represent the items in
the shopping cart. Email applications can use session variables to keep track of
whether the user has logged in.

The application object is responsible for interfacing with an HTTP adaptor and
forwarding HTTP requests to a dispatcher that, in turn, passes them to the
appropriate session and Web component. The application object also passes the
response from the active component back to the adaptor. In addition, the
application object manages sessions, application resources, and Web components.

Web Application Architecture

When you run a Web application, it communicates with the Web browser using the
process illustrated in Figure 4-3.

C H A P T E R 4

Web Applications

Web Application Architecture 47
 Apple Computer, Inc. November 2002

Figure 4-3 Web application communication chain

Here is a brief description of the elements involved in the communication process:

� A Web browser. WebObjects supports all Web browsers that conform to HTML
3.2. Of course, if your application uses more advanced features like JavaScript or
QuickTime, the users’ browsers must support those features.

� A Web server. WebObjects supports any Web server that uses the Common
Gateway Interface (CGI), the Netscape Server API (NSAPI), the Internet Server
API (ISAPI), or the Apache module API. Although necessary for deployment,

48 Developing a Web Application
 Apple Computer, Inc. November 2002

C H A P T E R 4

Web Applications

you don’t actually need a Web server while you develop your applications. In
addition, you can deploy applications as servlets inside a servlet container. See
“JavaServer Pages and Servlets” (page 117) for more information.

� An HTTP adaptor. The HTTP adaptor connects applications to the Internet or
an intranet by acting as an intermediary between application instances and Web
servers. Note that the HTTP adaptor may not be a separate process but a Web
server plug-in. An HTTP adaptor is not needed when an application is deployed
as a servlet.

� An application instance. The application instance receives incoming requests
and responds to them, usually by returning a dynamically generated Web page.
You can run multiple instances of an application when one instance is
insufficient to handle the application’s user load.

Developing a Web Application

Developing a Web application is a matter of creating your Web page templates,
bindings, and Java code files. Although these files are text-based and thus could be
created using a text editor, WebObjects provides graphical tools that simplify the
entire process. The sequence of tasks used to create a Web application with these
tools is as follows:

� Create a model using EOModeler.

� Create a project using Project Builder.

� Edit your Web components with WebObjects Builder.

You have already been introduced to EOModeler. The following sections introduce
Project Builder and WebObjects Builder.

Project Builder
As its name implies, Project Builder manages the constituent parts of an application
project, including source-code files, Web components, frameworks, graphics and
sound files, and the like. You use Project Builder to edit your code files, compile,

C H A P T E R 4

Web Applications

Developing a Web Application 49
 Apple Computer, Inc. November 2002

debug, and launch your application for development testing. The Project Builder
Assistant helps you create new Web components. You also can launch the other
development tools from within Project Builder.

Figure 4-4 shows Project Builder in use.

Figure 4-4 Project Builder

WebObjects Builder
You use WebObjects Builder to edit your application’s Web components.
WebObjects Builder allows you to graphically edit a component’s Web page
template. If you prefer, you can switch to the source view from which you can edit
the template as an HTML text file. WebObjects Builder also allows you to
graphically bind the dynamic elements on your template to variables and methods

50 Developing a Web Application
 Apple Computer, Inc. November 2002

C H A P T E R 4

Web Applications

within your code; you simply drag from a variable to the dynamic element as
shown in Figure 4-5. As you define bindings, WebObjects Builder adds them to the
component’s WOD file.

Figure 4-5 WebObjects Builder

C H A P T E R 4

Web Applications

Guidelines for Choosing the Web Application Approach 51
 Apple Computer, Inc. November 2002

Guidelines for Choosing the Web Application
Approach

The Web application approach has the following advantages:

� Portability. Any user with a Web browser can access a Web application.

� Flexibility. You can create intricate Web-based applications with relative ease.

� Reduced system administration. With the Web application approach, you can
publish data such as breaking news and stock prices without having to edit a
Web page each time data changes, reducing the number of people necessary to
keep the website up-to-date.

In some cases, you can use the Direct to Web rapid-development system to create a
Web application. Direct to Web works particularly well for data-driven
applications, prototypes, and internal applications. See “The Direct to Web
Approach” (page 51) for more information.

The Direct to Web Approach

Direct to Web is a technology that creates Web applications whose main purpose is
to provide a user interface that can be used to access and modify data in a data store.
All you need to do is create a Direct to Web project in Project Builder and provide a
data model and additional business logic, which can be contained in a custom
framework. The Project Builder Assistant then generates a ready-to-test Direct to
Web application.

By default, Direct to Web applications display a login page when a user accesses
them for the first time during a session (Figure 4-6). By default, this page provides
an interface to authenticate the user but does not actually perform any
authentication. Because the login page is a regular Web component, you can
customize its behavior.

52 The Direct to Web Approach
 Apple Computer, Inc. November 2002

C H A P T E R 4

Web Applications

Figure 4-6 A login page

After the user logs in, Direct to Web displays its first dynamically generated page:
a query-all page (Figure 4-7). This page allows the user to specify the type of records
she wants to work with. She can define a query for any type of record that is visible
in the page (the developer decides which entities are visible and which are not).

C H A P T E R 4

Web Applications

The Direct to Web Approach 53
 Apple Computer, Inc. November 2002

Figure 4-7 A query-all page

If the query-all page is not specific enough, the user can click one of the “more”
links, which brings up a query page specific to the corresponding type of record.
Figure 4-8 shows the Web page that appears when the user chooses to view detailed
query criteria for Listing records. In this page, the user can specify the values for
several properties at the same time. The resulting query is the logical “and” of the
individual queries for the properties.

54 The Direct to Web Approach
 Apple Computer, Inc. November 2002

C H A P T E R 4

Web Applications

Figure 4-8 A query page

When the user clicks Query DB on the query page or the magnifying glass button
on the query-all page (Figure 4-7), Direct to Web displays the records that match the
query on a list page (Figure 4-9). This page presents the records in batches; the user
can change the batch size and navigate from batch to batch.

C H A P T E R 4

Web Applications

The Direct to Web Approach 55
 Apple Computer, Inc. November 2002

Figure 4-9 A list page

Note that each Listing record on the list page in Figure 4-9 has an Edit button, which
indicates that the user can modify its contents. You can determine whether the
attributes of an entity can be modified by the application’s user.

If the records the user views are nonmodifiable, an Inspect button appears on each
row instead of an Edit button. If the user clicks Inspect next to one of the records,
Direct to Web displays an inspect page for the record that reveals additional
information about it.

If the records displayed on the list page are modifiable and the user clicks Edit next
to one of them, Direct to Web displays an edit page for the record (Figure 4-10). On
the edit page, the user can edit the attributes for the object or click Edit next to one
of the relationships to edit the relationship.

56 The Direct to Web Approach
 Apple Computer, Inc. November 2002

C H A P T E R 4

Web Applications

Figure 4-10 An edit page

The user edits a relationship using an edit-relationship page, shown in Figure 4-11,
which allows her to edit to-many and to-one relationships.

C H A P T E R 4

Web Applications

The Direct to Web Approach 57
 Apple Computer, Inc. November 2002

Figure 4-11 An edit-relationship page

With the exception of the login page, every Direct to Web page has a toolbar
containing a menu and buttons that assist in navigating around the application; it’s
shown in Figure 4-12.

58 The Direct to Web Approach
 Apple Computer, Inc. November 2002

C H A P T E R 4

Web Applications

Figure 4-12 The toolbar

Every Direct to Web application appears in one of three looks. A look is a visual
theme and affects the layout and appearance of the pages. The example pages you
have seen are in the Basic look. Direct to Web also supports two other looks: the
Neutral look, shown in Figure 4-13, and the WebObjects look, shown in Figure 4-14.

Figure 4-13 A Neutral-look page

C H A P T E R 4

Web Applications

Direct to Web Architecture 59
 Apple Computer, Inc. November 2002

Figure 4-14 A WebObjects-look page

Direct to Web Architecture

As you have seen, Direct to Web applications have a fixed structure. They consist of
a set of task pages (for example, query, list, and edit pages) that work for any type
of record. These task pages are created using special components called Direct to
Web templates.

A Direct to Web template uses information from the entities it displays. A data
entity, defined in the data model, specifies how a table’s columns map to its
attributes. The Direct to Web template takes advantage of the entity’s property
information (that is, information about the entity’s attributes and relationships) and
determines which properties to display. For example, a Direct to Web template
displaying a list page for Listing objects can determine that it needs to display the
address, asking price, features, and other attributes for each listing on the page.
Figure 4-15 shows a similar scenario using an entity named Product.

60 Direct to Web Architecture
 Apple Computer, Inc. November 2002

C H A P T E R 4

Web Applications

Figure 4-15 Determining attributes from the entity

Direct to Web applications can be configured using a Java applet called Web
Assistant. The configuration information is stored as a database of rules. Rules say
something like “if the task page is a list page and the entity is the User entity, do not
display the banner.” Each rule has a priority; rules with a high priority override
rules with lower priority. Direct to Web defines a set of essential rules that define
the basic application behavior. You can define higher priority rules that override the
default rules. This is exactly what the Web Assistant does. Figure 4-16 shows the
relationship between the Direct to Web template, the rule system, the rule database,
and the Web Assistant. The rule system analyzes data models and sets of rules to
dynamically generate an application’s user interface.

..................

..................

C H A P T E R 4

Web Applications

Developing a Direct to Web Application 61
 Apple Computer, Inc. November 2002

Figure 4-16 The Direct to Web rule system

Note that when you configure your application with the Web Assistant, you don’t
need to recompile your code to test the user interface. Direct to Web does not
generate code. It generates Web pages at runtime based on Direct to Web templates
and rules.

Developing a Direct to Web Application

You perform the following steps to create a Direct to Web application:

1. Create a model using EOModeler.

2. Create a Direct to Web application project using Project Builder.

62 Developing a Direct to Web Application
 Apple Computer, Inc. November 2002

C H A P T E R 4

Web Applications

3. Customize your Direct to Web application using the Web Assistant (optional).

4. Further customize your Direct to Web application (optional).

Of the four steps, the last two are unique to Direct to Web and are discussed in more
detail.

The Web Assistant
The Web Assistant is a Java applet that runs at the same time as your application. It
communicates directly with Direct to Web and allows you to configure your
application in many ways. Figure 4-17 shows the Web Assistant in use.

Figure 4-17 The Web Assistant

C H A P T E R 4

Web Applications

Developing a Direct to Web Application 63
 Apple Computer, Inc. November 2002

With the Web Assistant, you can designate which entities are modifiable,
nonmodifiable, or hidden, as shown in Figure 4-18. You can also set appearance
parameters for most of the pages that Direct to Web generates. For example, you can
control whether the page displays with a banner. You can also change the
background color of the table the page displays, if applicable. The Web Assistant
also lets you to configure the way properties (attributes and relationships) appear
on list, edit, and inspect pages.

Figure 4-18 The Entities pane of the Web Assistant

As mentioned earlier, as you configure your application with the Web Assistant, it
defines rules that override the default Direct to Web rules. Thus, the Web Assistant
is the preferred way to modify rules. Nevertheless, sometimes you need to change
the default rules or override the default rules in ways the Web Assistant can’t. In
such cases, you use Rule Editor to edit the rules directly. Figure 4-19 shows Rule
Editor in action.

64 Developing a Direct to Web Application
 Apple Computer, Inc. November 2002

C H A P T E R 4

Web Applications

Figure 4-19 Rule Editor

Advanced Customization of Direct to Web
Applications
If you need to customize your application beyond what you can do with the Web
Assistant and Rule Editor, you can use these methods:

� Freeze a page. When you want to change the appearance or function of a single
page in your Direct to Web application, you can freeze the page with the Web
Assistant. When you do that, the page becomes a Web component in your
project with a Web page template, a Java source file, and a bindings file. You can
edit it with WebObjects Builder just as you would any other Web component.
The downside is that you can’t customize frozen pages with the Web Assistant.

� Generate a Direct to Web template. Sometimes you need to change the way
every page for a particular task appears in your application. For example, you
might want to put an extra link at the bottom of every list page. To do so, you
instruct the Web Assistant to generate a Direct to Web template, modify the

C H A P T E R 4

Web Applications

Advantages of the Direct to Web Approach 65
 Apple Computer, Inc. November 2002

template, and then tell the Assistant to use your customized template instead of
the standard one. As mentioned earlier, a Direct to Web template is an ordinary
Web component and can be edited using WebObjects Builder. Unlike frozen
pages, Direct to Web pages based on custom templates can be customized with
the Web Assistant.

� Modify the page wrapper and toolbar. The page wrapper Web component is
included in your project and determines the text and elements that are common
to every page in your application except the login page. It contains the toolbar
appropriate for the look. Figure 4-12 (page 58) shows the toolbar for the Basic
look. The toolbar is another Web component in your project.

� Mix Web and Direct to Web pages. You can navigate to a Direct to Web page
from a Web page and vice versa. You can also embed certain Direct to Web
functions within a Web page. These capabilities extend the flexibility of Direct
to Web considerably.

� Perform other customizations. You can change almost anything in a Direct to
Web application because it is just a Web application with extra functionality.
However, you need to know the details of the Direct to Web architecture.

Advantages of the Direct to Web Approach

Direct to Web applications are just specialized Web applications; thus they have the
same advantages that Web applications possess: portability and reduced system
administration. What Direct to Web adds to the Web application approach is the
ability to dynamically generate all the Web pages, relieving you of designing and
coding them yourself. As a consequence, Direct to Web has the following
advantages over the Web application approach:

� It flattens the learning curve for developing applications.

� It reduces the time required to develop applications.

� It reduces the likelihood of errors.

� It increases the maintainability and adaptability of applications.

� It increases prototyping capabilities.

� It allows you to focus on business logic instead of on the user interface.

66 Limitations of Direct to Web
 Apple Computer, Inc. November 2002

C H A P T E R 4

Web Applications

Also, Direct to Web applications are constructed using proven WebObjects
technology, which increases the stability of applications and reduces the time
required to test applications before deploying them.

Limitations of Direct to Web

The user interface generated by Direct to Web is based on HTML technology. As a
result, Direct to Web user interfaces are highly portable but suffer the limited
interactivity provided by HTML forms.

Because Direct to Web generates applications for you, the applications have a
number of additional limitations.

First, the programming model is indirect. You provide a model and Direct to Web
assembles the application for you. The Web page generation is performed by the
Direct to Web engine. You don’t have to know what actions the engine is
performing. This makes it easy for you to develop simple applications. But for
certain customizations, the learning curve can get steep.

The dynamic generation of Web pages adds a layer of abstraction on top of the Web
application development approach. This layer adds complexity that regular Web
applications lack, and you might have to learn the details of it to get certain results.
In fact, making fundamental changes to a Direct to Web application can be a lot of
work. Note, however, that you can typically reuse this work in later applications.

Another disadvantage is that modifying the layout of a Direct to Web template is
more involved and harder to do than laying out a Web component because Direct
to Web templates are more complex than most Web components.

C H A P T E R 4

Web Applications

Choosing a Web Application Development Approach 67
 Apple Computer, Inc. November 2002

Choosing a Web Application Development Approach

Direct to Web is particularly suited for data-driven mission-critical applications,
prototypes, and intranet applications where development time is critical and the
limitations that Direct to Web imposes on the flow and user interface are not an
issue. Direct to Web allows you to customize an application by adding rules.

For applications that are not data-driven or when you want to have complete
control of the layout of the Web pages, the Web application approach can be the
most appropriate. Furthermore, mastering the Web application approach can be
beneficial when you need to heavily customize a Direct to Web application.

Once you are familiar with the operation of Direct to Web, you can explore using
Direct to Web reusable components in an Web application. Direct to Web reusable
components allow you to nest a Direct to Web templates. This technique can
dramatically reduce the development time of certain types of pages like forms and
list pages. For more information on Direct to Web reusable components, see Inside
WebObjects: Developing Applications With Direct to Web.

68 Choosing a Web Application Development Approach
 Apple Computer, Inc. November 2002

C H A P T E R 4

Web Applications

69
 Apple Computer, Inc. November 2002

C H A P T E R 5

5 Desktop Applications

If you need to develop distributed applications with more complex and responsive
user interfaces than Web applications allow, Java Client might fill that requirement.
Java Client applications use Swing to generate the user interface. These
applications can be deployed as applets running in a Web browser or as desktop
applications running in the client computer’s Java virtual machine. The latter is
highly recommended. However, since the Java Client architecture isolates the
application from data-access mechanisms that are database-engine specific, you are
not tied to any particular deployment scheme. For detailed information on Java
Client applications, see Inside WebObjects: Java Client Desktop Applications. This
chapter introduces the Java Client and Direct to Java Client development
approaches.

In the example Java Client application shown in Figure 5-1, the user interface is like
the interfaces you see in desktop applications.

70 Java Client Features
 Apple Computer, Inc. November 2002

C H A P T E R 5

Desktop Applications

Figure 5-1 A Java Client application

Java Client is a three-tier network application solution that allows you to develop
platform-agnostic desktop applications with database access and full-featured user
interfaces. Java Client applications are WebObjects applications: They share much
of their API with traditional Web applications, such as Enterprise Objects for
database access and the Foundation framework, which supplies data structures and
other core functionality to applications.

Java Client Features

If you’re looking for a Java application platform with robust data access, rapid
development tools, and powerful, innovative customization capabilities, Java
Client is the perfect solution. This section summarizes its features.

C H A P T E R 5

Desktop Applications

Java Client Features 71
 Apple Computer, Inc. November 2002

Better User Experience
Java Client applications differ from Web applications in that the user interface is
built on Sun’s Swing components, rather than on HTML code. This allows
applications to take advantage of the rich user interface elements Swing offers. This
is perhaps the primary reason you would choose to develop an application using
Java Client: the need for a rich, more interactive user interface.

Rich user interfaces allow you to build more complex and interactive applications
than HTML allows. As the user interface becomes more robust, it is easier to display
and manipulate complex data. The responsive desktop-application user interface
gives users the ability to work more efficiently: Desktop applications feel like they
are closer to the data store.

Object Distribution
Java Client is built on the paradigm of object distribution. It distributes
enterprise-object instances between an application server and one or more clients—
Java applications or applets. How this distribution occurs is up to the application’s
developer.

In multitier intranet applications, it’s vitally important that the developer has
control over where the business logic sits. Some information, such as credit card
numbers and passwords, are important elements of business logic but should never
be sent to the client computer. Likewise, certain algorithms represent confidential
business logic and should live only on the application server. By partitioning your
business logic into a client side and a server side, you can improve performance and
secure business rules and legacy data.

In Java applications, object distribution is crucial in protecting business rules. Since
Java bytecode can be decompiled, it’s important that you have control over the
objects that live on the client. Object distribution, coupled with remote method
invocation (RMI), lets you build secure, high-performance applications.

The Best of WebObjects
As with any type of WebObjects application, Java Client gives you a lot for free. Its
tight integration with Enterprise Object technology, allow you to take full
advantage of the rich data-access and persistence mechanisms the technology
offers. Without writing a single line of code, Java Client allows you to connect user

72 When to Use Java Client
 Apple Computer, Inc. November 2002

C H A P T E R 5

Desktop Applications

interface widgets to database actions such as saving, retrieving, reverting, undoing,
adding records, editing records, and more. Furthermore, Java Client's integration
with Enterprise Objects abstracts development above the need to write SQL code.
And the development tools you use to build Java Client applications let you build
complex Swing-based user interfaces without writing any Java code.

It is the WebObjects philosophy that the technology should take care of all the
elementary tasks for three-tier applications: database access, user interface coding,
deployment, and client-server communication. That way, you can focus on writing
business logic that leverages the powerful data-access mechanisms Enterprise
Objects provides.

Rapid Application Development
In addition to the powerful data-modeling, project-development, and
interface-building tools, Java Client includes a sophisticated rapid development
environment based on the WebObjects rule system, which analyzes data models
and sets of rules in order to dynamically generate user interfaces. This
application-development approach is called Direct to Java Client.

Direct to Java Client lets you focus on writing custom business logic and provides
customization techniques that allow you to build sophisticated user interfaces
without writing any code. In addition, with Direct to Java Client you can
immediately see how changes in a data model are reflected in an application’s
user interface.

When to Use Java Client

Java Client is a great technology for developing and deploying desktop applications
with powerful database access in controlled network environments where the end
users are known and are willing to install parts of the client application. It is not
suitable, however, for use in uncontrolled Internet environments or for mass
markets. Typically, Java Client applications, when deployed as desktop
applications, are practical only in intranet environments.

C H A P T E R 5

Desktop Applications

When to Use Java Client 73
 Apple Computer, Inc. November 2002

Consider the case of a software company’s bug-tracking system. Perhaps the
company wants to give premium-support customers access to the system through
a Java Client application. These customers are knowledgeable users and would
have no problem downloading and installing certain parts of the client application.
However, providing the client application as a desktop application to a large
number of novice end users would be impractical due to the support those users
would need to install and maintain current the client application.

When deployed as desktop applications, Java Client applications have special
deployment requirements because part of the application runs on the user’s
computer. Unlike Web applications, it is not enough to have a Web browser to run
a Java Client application as a desktop application: You need to install the client-side
application on the user’s computer, which requires system administration, or the
user needs to download the application herself. This makes Java Client applications
too complex for the average network application user who expects to type a URL in
a Web browser and enter an application within seconds of hitting the website.

However, you can also deploy Java Client applications as applets that run in Web
browsers. Deploying as applets alleviates many of the issues encountered when
running Java Client applications as desktop applications since the user doesn’t need
to download or install the client application. However, applets introduce other
usability and deployment issues. For example, the Web browser must support
embedded applets in Web pages and the user must configure the browser to allow
applet execution.

WebObjects provides two effective solutions to the application-deployment
problems mentioned earlier: the Java Client Class Loader and Java Web Start.

The Java Client Class Loader eases installation of client-side applications by
requiring only the installation of a basic Java Client system. When the user launches
the application, the classes specific to the application are downloaded. This way, the
user always runs the latest version of the application without worrying about
downloading any files. The user would have to install Java Client files only if you
upgrade your WebObjects software. The drawback of this approach is that
application launch is slower because downloading is required to have a
working application.

Java Web Start, a more advanced technology, allows users to launch Java Client
applications with a single click. The technology also provides streamlined
application deployment by providing caching and other mechanisms to ease
client-side class management. For more information on Java Web Start, see Inside
WebObjects: Java Client Desktop Applications.

74 When to Use Java Client
 Apple Computer, Inc. November 2002

C H A P T E R 5

Desktop Applications

In deciding whether to use Java Client, you should evaluate the technology with the
following criteria in mind:

� Portability: Java Client applications are 100% Pure Java applications. Java Client
applications running in Mac OS X take advantage of platform-specific interface
features such as the global menu and the dirty-window marker.

� Performance: After the initial download of Java classes to the client computer,
Java Client applications don’t exchange large chunks of data between the client
side and the server side. Rather, compact business objects are exchanged over
the network. Also, the Java Client architecture separates the user interface layer
from the data-exchange layer; that way, enterprise-object data flows across the
network, independent of user interface data. This feature enables Java Client
applications to scale well.

� Network environment: Java Client applications can be deployed across the
Internet; they are not inherently constrained to intranet environments.
However, they are not appropriate for high-volume, high-visibility applications
because of the long initial download and other system administration
requirements.

� System administration: The presence of Java Runtime Environment (JRE) 1.3 or
later is not ubiquitous among desktop operating systems. Although Mac OS X
includes JRE 1.3 out of the box, JRE 1.3 is not available for Mac OS 9 or earlier.
Sun provides the JRE for all Windows platforms, but it does not ship in the box.
JRE 1.3 is available on many UNIX-based platforms. So, although the JRE is
widely available, it must often be downloaded and installed by the end user.
You should evaluate your target market, keeping in mind that some customers
will not readily accept by the proposition of installing the JRE.

� Security: If you take careful steps to partition your business logic, Java Client
applications offer security equal to that of Web applications. By default, Java
Client uses HTTP as the transport protocol between the client side and the server
side, but it can be replaced with another, more secure protocol such as Secure
Sockets Layer (SSL). You can find more information on SSL at http://
developer.netscape.com/docs.

� Client-side processing: Web applications do the majority of their processing on
the server, while Java Client moves much of an application’s processing to the
client. This reduces the amount of client-server communication considerably,
making Java Client applications snappier than Web applications.

� User experience: If your application demands a rich user interface, the
manipulation of complex data, and long sessions, Java Client is an excellent
choice.

http://developer.netscape.com/docs
http://developer.netscape.com/docs

C H A P T E R 5

Desktop Applications

Two Approaches to Java Client 75
 Apple Computer, Inc. November 2002

Two Approaches to Java Client

For Java Client applications, WebObjects offers a rapid development environment
that is useful for prototyping applications and for building full-featured, usable
desktop applications. The Java Client rapid development environment is called
Direct to Java Client.

Direct to Java Client technology and Java Client technology are very similar in that
they use Enterprise Object technology to access data stores. They differ only at the
user interface level.

Think of the relationship this way: A Java Client application is a completely
customized Direct to Java Client application. While the user interface in Direct to
Java Client applications is generated dynamically at runtime, the user interface in
Java Client applications is fixed and built manually.

If you need the precise user interface customization that the nondirect approach
allows, it’s much easier to integrate a custom interface file into a Direct to Java Client
application than to develop a completely custom Java Client application, although
the latter is possible and supported. By customizing a Direct to Java Client
application, you get the best of both worlds: the advantages of Direct to Java Client
and the advantages of a customized user interface.

The primary advantage of Direct to Java Client is that it’s not necessary to write
source code to generate or manage an application’s user interface. This allows you
to focus on writing business logic instead. Although the direct approach lets you
manage user interfaces without writing much source code, the approach offers a
number of mechanisms to customize user interfaces:

� Java Client Assistant

� Rule Editor

� freezing XML

� freezing nib files

� using custom controller classes

� using factory delegates

76 Two Approaches to Java Client
 Apple Computer, Inc. November 2002

C H A P T E R 5

Desktop Applications

Nib files define the layout of the user interface elements of a desktop application.
They are created using Interface Builder.

The user interfaces that the two approaches to Java Client development generate
have a particular character. However, keep in mind that it’s possible to customize
each type of interface to look like the other.

Typically, user interfaces built in Interface Builder for Java Client applications or for
use as frozen interface files in Direct to Java Client applications resemble the user
interface of a typical desktop application, such as the one shown in Figure 5-2.

Figure 5-2 A typical Java Client application

The dynamic user interface generation provided in Direct to Java Client
applications yields interfaces that resemble . However, advanced Direct to Java
Client applications are likely to include other, nondynamically generated user
interfaces such as custom controller classes or frozen interface files (either built in
Interface Builder or using Swing directly).

C H A P T E R 5

Desktop Applications

Java Client Architecture 77
 Apple Computer, Inc. November 2002

Figure 5-3 A typical Direct to Java Client application

Java Client Architecture

The Java Client architecture differs from the Web application architecture in that it’s
distributed across client and server systems as shown in Figure 5-4. The server side
interacts with a database server as in Web applications; the client side, in addition
to providing the application’s user interface, can also contain nonsensitive
business logic.

78 Java Client Architecture
 Apple Computer, Inc. November 2002

C H A P T E R 5

Desktop Applications

Figure 5-4 Java Client’s distributed, multitier architecture

Figure 5-5 elaborates the architecture of Java Client applications.

C H A P T E R 5

Desktop Applications

Java Client Architecture 79
 Apple Computer, Inc. November 2002

Figure 5-5 Architecture of a Java Client application

The architecture of Direct to Java Client applications is slightly more complex than
that of nondirect Java Client applications, as illustrated in Figure 5-6. It includes the
rule system—the part of the server-side application responsible for dynamically
generating the user interface and defining its behavior.

80 Java Client Architecture
 Apple Computer, Inc. November 2002

C H A P T E R 5

Desktop Applications

Figure 5-6 Architecture of a Direct to Java Client application

The client-side application and the server-side application have duties other than
merely providing the user interface and data-store access—for example, each can
contain business logic and each communicates with the other through a Web server.

C H A P T E R 5

Desktop Applications

Java Client Architecture 81
 Apple Computer, Inc. November 2002

However, the separation of data-store access and the user interface is significant
because it provides a rich user interface without compromising security or
performance.

Sensitive business logic and database connection logic is provided only by the
server-side application. Because compiled Java on the client side can be
decompiled, the client-side application is limited to user interface code and
nonsensitive business logic. At the same time, the ability to put some of the business
logic on the client (any nonsensitive logic) improves performance. By performing as
much processing as possible on the client (data validation, for example), round trips
to the server are limited.

The Java Client architecture duplicates the graph of enterprise-object instances on
the client-side application so the object graph and its management occur on both the
client and the server. WebObjects handles communication between client and
server and synchronizes the enterprise-object graphs of the two tiers.

Desktop User Interface
The user interface itself is implemented using Swing. This is what gives a Java
Client application the appearance and functionality of a traditional desktop
application. WebObjects maps data between the application’s user interface and the
graph of enterprise objects. Changes to the object graph are automatically
synchronized with the user interface and user-entered data is automatically
reflected in the object graph.

Using the Direct to Java Client approach, the user interface is generated
dynamically by the rule system on the server side. The rule system analyzes an
application’s data models and generates Extensible Markup Language (XML)
descriptions of the user interface. These XML descriptions are sent to the client,
where they are parsed into Swing widgets to create the user interface.

Data Synchronization Between Client and Server
Figure 5-7 shows the flow of data between the client and server applications for the
Java Client architecture.

82 Java Client Architecture
 Apple Computer, Inc. November 2002

C H A P T E R 5

Desktop Applications

Starting in the upper left of the diagram and working down, when the client
application initiates a fetch, the client application forwards the corresponding fetch
specification to the server application. From there the normal mechanisms take over
and an SQL query is performed in the data-store server.

Working back up the diagram on the right side, the data-store server returns the
rows of requested data and, as usual, this data is converted to enterprise-object
instances. The server-side application then sends copies of the requested objects to
the client-side application. When the client receives the objects, it updates its user
interface with values from the requested objects.

Figure 5-7 Data flow in a Java Client application

.........
....

.............

.........
....

.............

......
......

..

..............

......
......

..

..............

C H A P T E R 5

Desktop Applications

Java Client and Other Multitier Systems 83
 Apple Computer, Inc. November 2002

Although requested enterprise-object instances are copied from the server to the
client, and these objects exist in parallel object graphs on both tiers, the
enterprise-object instances on the client do not exactly mirror the enterprise-object
instances on the server. The objects on the client usually have a subset of the
properties of the objects on the server. You can partition your application’s
enterprise objects so the objects that exist on the client have a restricted set of data
and behaviors. This ability allows you to restrict sensitive data and business logic to
the server. For example, in Figure 5-7, the client-side enterprise objects don’t have
the whole property, the price the seller paid to the manufacturer.

Once the client has fetched data, this data is cached and represented internally by
the client’s object graph. As users modify the data (or add or delete records), the
client application updates the client’s object graph to reflect the new state. When the
client application initiates a save operation, WebObjects synchronizes the
server-side objects with the values of the client-side objects. If the business logic on
the server validates the changes made, they are committed to the database.

Note that Java Client automatically updates the client with changes that have
occurred on the server. Whenever the client makes a request, the server passes
updates along to the client with whatever information the client requested.
Similarly, Java Client has the opportunity to update the objects on the client before
client-side objects invoke methods on server-side objects.

Java Client and Other Multitier Systems

There are many distributed multitier Java-based architectures on the market today.
So how do they compare with Java Client?

� Client JDBC applications use a fat-client architecture. Custom code invokes
JDBC operations on the client, which in turn goes through a driver to
communicate with a JDBC proxy on the server. This proxy makes the necessary
client-library calls on the server.

The shortcomings of this architecture are typical of all fat-client architectures.
Security is a problem because the bytecodes on the client are easily decompiled,
leaving both sensitive data and business rules at risk. In addition, this

84 Java Client and Other Multitier Systems
 Apple Computer, Inc. November 2002

C H A P T E R 5

Desktop Applications

architecture doesn’t scale; it is expensive to move data over the channel to the
client. Also, client-JDBC applications access the data store directly—there is no
server layer to validate data or control access to the data store.

� JDBC three-tier applications (with CORBA as the transport) are a big
improvement over client JDBC applications. In this architecture, the client can be
thin since all that is required on the client side are the Java Foundation Classes
(JFC), nonsensitive custom code (usually for managing the user interface), and
CORBA stubs for communicating with the server side. Sensitive business logic
and database-connection information are stored on the server. In addition, the
server handles all data-intensive computations.

However,

the JDBC three-tier architecture has its own weaknesses. First, it results in high
network traffic. Because this architecture uses proxy business objects on the
client side as handles to real objects on the server side, each client request for an
enterprise-object property is forwarded to the server, causing a separate round
trip. Second, JDBC three-tier requires developers to write much of the code
themselves, from database access and data packaging, to user interface
synchronization and change tracking. Finally JDBC three-tier does not provide
much of the functionality associated with application servers, such as
application monitoring and load balancing, nor does it provide HTML-code
integration.

The Java Client architecture scales well since real data objects live on the client and
round trips are made to the server only for database commits and new data fetches.
Also, Java Client applications are designed to leverage custom business logic, which
lets you determine which properties of data entities are sent to the client side and to
validate data from the client before committing it to the data store.

C H A P T E R 5

Desktop Applications

Developing a Java Client Application 85
 Apple Computer, Inc. November 2002

Developing a Java Client Application

The essential tasks you need to perform when creating a Java Client application are
listed below:

1. Create a model using EOModeler.

2. Create a project using Project Builder.

3. Write source code for enterprise-object classes (if your enterprise objects require
custom business logic).

4. Create your application’s user interface with Interface Builder (Java Client
approach).

5. Customize your application’s user interface (Direct to Java Client approach).

6. Write source code for any application-level logic.

The tasks have much in common with those for developing Web applications. The
major differences are the way you design your enterprise-object classes and the way
you create your application’s user interface.

Designing Enterprise Objects for Java Client
Java Client allows you to specify two enterprise-object classes for each entity: one
for the server side and one for the client side. The client and server classes can have
different sets of properties and business logic. This means that programming a Java
Client application requires a specific design technique that isn’t necessary in Web
application development: object partitioning. Simply put, you have to determine
whether you need different enterprise-object classes for the client and the server
and also what properties and business logic to put in each class.

Usually, client-side enterprise-object classes have the more restricted set of
properties and behaviors, but it is really up to you to decide, based on the
requirements of the application and your business. As noted earlier, the primary
criteria for partitioning are performance and security.

86 Developing a Java Client Application
 Apple Computer, Inc. November 2002

C H A P T E R 5

Desktop Applications

Creating the User Interface—Java Client Approach
A Java Client application gives you considerable flexibility in how you compose its
user interface. Ideally, you provide an application’s entire user interface in a single
application that runs on the client. But you can also combine Java Client applets,
static Web pages, and Web components in various ways. You can have pages with
or without Java Client applets or pages with multiple Java Client applets. For
example, you could have a login page that takes the user to one of many Java Client
windows, based on account information. In addition, Java Client applets are not
limited to the downloaded Swing components; as with any applet, they can create
dialogs and secondary windows quickly.

If your application’s user interface uses static and dynamically generated Web
pages, you create those components of the user interface using WebObjects Builder,
as described in “Web Applications” (page 41). The process is different for creating
a Java Client application or applet. Instead of using WebObjects Builder to create the
user interface, you use Interface Builder.

In Interface Builder, you typically construct a user interface by dragging widgets
from a palette and dropping them in a window, as shown in Figure 5-8. It does
more, however, than simple user interface layout. Interface Builder also lets you
create, edit, and connect objects so they can communicate with one another at
runtime.

Note: The process for creating a Java Client user interface is very similar to the
one for creating a Cocoa user interface for Mac OS X applications.

C H A P T E R 5

Desktop Applications

Developing a Java Client Application 87
 Apple Computer, Inc. November 2002

Figure 5-8 Composing a user interface with Interface Builder

Customizing the User Interface—Direct to Java
Client Approach
Writing custom rules is another way to customize your Direct to Java Client
application. It’s similar to writing custom rules for Direct to Web applications. The
information about how to generate the user interface of a Direct to Java Client
application is stored in model files and rule sets. The default rules generate the
default Direct to Java Client application user interface. To customize the user
interface, you use the Direct to Java Client Assistant, shown in Figure 5-9, and write
rules with Rule Editor. For more information, see “Developing a Direct to Web
Application” (page 61).

88 Developing a Java Client Application
 Apple Computer, Inc. November 2002

C H A P T E R 5

Desktop Applications

Figure 5-9 Direct to Java Client Assistant tool

There are also more specialized ways to change the way Direct to Java Client works.
For example, you can get the precise user interface layout for a particular window
by freezing the interface and supplying a nib file (created in Interface Builder the
way you do for regular Java Client applications). As another example, Direct to Java
Client provides hooks you can use to introduce custom commands into the menus
of an application. Additionally, you can extend Direct to Java Client classes to
change the way an application performs a particular task or to add new
functionality to the default set.

C H A P T E R 5

Desktop Applications

Choosing a Desktop Application Development Approach 89
 Apple Computer, Inc. November 2002

Direct to Java Client technology is flexible and extensible; there are numerous
customization approaches. There are simple approaches that are code-free and
maintainable (using the Java Client Assistant and writing custom rules); there are
also more specialized but complex approaches that require a lot of work, and there’s
everything in between. It’s generally a question of what tradeoffs you’re willing to
make.

Choosing a Desktop Application Development
Approach

Direct to Java Client simplifies many parts of the development process and
facilitates the addition of features such as localization, data access, and data-model
synchronization. The Direct to Java Client approach is a great way to start
developing Java Client applications.

Eventually, you may need to customize a Direct to Java Client application, which
requires learning some of the customization methods listed earlier in this chapter.
Although this most likely requires you to learn about the rule system, the controller
hierarchy, and user interface generation in XML, the customization techniques
work at a higher level than Swing. You can also save time by learning the Direct to
Java Client customization techniques rather than creating your own Java Client
interfaces in Interface Builder or using Swing.

90 Choosing a Desktop Application Development Approach
 Apple Computer, Inc. November 2002

C H A P T E R 5

Desktop Applications

Table 5-1 compares using the two Java Client approaches in various development
tasks.

It is possible to manually develop effective Java Client applications without using
Direct to Java Client; however, this approach begets little benefit. Using custom nib
files in Direct to Java Client applications is the most sensible way to integrate
custom user interfaces into Java Client applications.

Table 5-1 Comparison of Java Client and Direct to Java Client

Task Java Client Direct to Java Client

Customization Interface Builder and Swing. Moderate. Available tools: Direct to
Java Client Assistant, XML freezing,
nib files, custom controller classes,
controller factory delegates.

Development Moderate to difficult, depending on
user interface design.

Rapid. User interfaces are
automatically generated and easily
customizable.

User interface
synchronization
with data model

Difficult. User interface not
synchronized with data model once
user interface building begins.

Easy. Synchronization happens
throughout much of the
customization process.

Localization Moderate. Must use separate nib files. Easy. Automated using localizable
string tables.

Providing Web Services 91
 Apple Computer, Inc. November 2002

C H A P T E R 6

6 Web Services Applications

WebObjects allows you to provide and consume Web services, which simplify the
development of distributed applications. Web services provide an efficient way for
applications to communicate with each other. Based on Simple Object Access
Protocol (SOAP), Web services can be used across multiple platforms, including
Microsoft’s .NET environment. A Web service is composed of operations, which are
similar to the methods of a Java class (in WebObjects, that’s exactly what they are).
For example, a company could develop a Web service that provides the current
stock price for a specific stock symbol.

This chapter introduces Web service development in WebObjects. For an in-depth
discussion, see Inside WebObjects: Web Services.

Providing Web Services

With WebObjects you can easily take advantage of Web services to streamline your
organization’s internal information-processing systems or to allow your business
partners to access and modify company information in an efficient manner.

WebObjects goes a long way towards streamlining Web service development and
consumption. The sections that follow give you an idea of how straightforward
Web service development is with WebObjects.

92 Providing Web Services
 Apple Computer, Inc. November 2002

C H A P T E R 6

Web Services Applications

A Sophisticated Calculator
Web services allow the seamless integration of existing business processes across a
company’s departments or between organizations. WebObjects allows you to take
logic hitherto available through slow, error-prone user interfaces and publish it as
a Web service.

A calculator is something you might want to make available to other applications.
Imagine for a moment that you have developed a great Calculator class with
methods to add, subtract, multiply, and divide numbers. Listing 6-1 shows this
innovative class.

Listing 6-1 Calculator.java class

public class Calculator extends Object {

 public static double add(double addend1, double addend2) {
 double sum = addend1 + addend2;
 return sum;
 }

 public static double subtract(double minuend, double subtrahend) {
 double difference = minuend - subtrahend;
 return difference;
 }

 public static double multiply(double multiplicand1, double multiplicand2) {
 double product = multiplicand1 * multiplicand2;
 return product;
 }

 public static double divide(double dividend, double divisor) {
 double quotient = dividend / divisor;
 return quotient;
 }
}

The class contains no Web service–related method invocations. It doesn’t even use
objects; all the method parameters and return values are primitive types. The class
is the main part of a WebObjects application project called Calculator.

C H A P T E R 6

Web Services Applications

Web Services Description Language 93
 Apple Computer, Inc. November 2002

Publishing the Calculator Class as a Web Service
After developing multiple user interfaces to your class’s methods to satisfy the
demands of your customers, you decide to make it available as a Web service. This
way you can concentrate on making the class’s logic more efficient instead of on the
design of Web pages or the layout of user interface controls in desktop applications.

So, what procedure do you need to follow to be able to deploy your application as
a Web service?

First, you need to add the Web service–support framework to your project.

Second, you need to add the following method invocation to your Application.java
file.

WOWebServiceRegistrar.registerWebServiceForClass(Calculator.class, true);

Third, build and run the application. You are now a Web service provider.

Web Services Description Language

Web Services Description Language (WSDL) is the lingua franca of Web service-
enabled applications. When you provide a Web service, for the most part, you
provide a WSDL document that describes it. Your Web service consumers use this
document to find out what operations the service supports, the number and data
types of the arguments each operation requires, and the number and data types of
the values the operations return.

You don’t have to worry about generating the WSDL document for your Web
service because WebObjects does that for you. Your customers obtain it by
accessing a URL similar to this one:

http://noss.apple.com/cgi-bin/WebObjects/Calculator.woa/ws/Calculator?wsdl

Listing 6-2 shows the WSDL document generated by the Calculator application.

94 Web Services Description Language
 Apple Computer, Inc. November 2002

C H A P T E R 6

Web Services Applications

Listing 6-2 WSDL document for the Calculator Web service

<wsdl:definitions targetNamespace="http://noss.apple.com/cgi-bin/WebObjects/
Calculator.woa/ws/Calculator" xmlns="http://schemas.xmlsoap.org/wsdl/"
xmlns:apachesoap="http://xml.apache.org/xml-soap" xmlns:impl="http://noss.apple.com/
cgi-bin/WebObjects/Calculator.woa/ws/Calculator-impl" xmlns:intf="http://
noss.apple.com/cgi-bin/WebObjects/Calculator.woa/ws/Calculator" xmlns:soapenc="http://
schemas.xmlsoap.org/soap/encoding/" xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"
xmlns:wsdlsoap="http://schemas.xmlsoap.org/wsdl/soap/" xmlns:xsd="http://www.w3.org/
2001/XMLSchema">
 <wsdl:message name="subtractRequest">
 <wsdl:part name="minuend" type="xsd:double"/>
 <wsdl:part name="subtrahend" type="xsd:double"/>
 </wsdl:message>
 <wsdl:message name="addResponse">
 <wsdl:part name="return" type="xsd:double"/>
 </wsdl:message>
 <wsdl:message name="addRequest">
 <wsdl:part name="addend1" type="xsd:double"/>
 <wsdl:part name="addend2" type="xsd:double"/>
 </wsdl:message>
 <wsdl:message name="divideResponse">
 <wsdl:part name="return" type="xsd:double"/>
 </wsdl:message>
 <wsdl:message name="subtractResponse">
 <wsdl:part name="return" type="xsd:double"/>
 </wsdl:message>
 <wsdl:message name="divideRequest">
 <wsdl:part name="dividend" type="xsd:double"/>
 <wsdl:part name="divisor" type="xsd:double"/>
 </wsdl:message>
 <wsdl:message name="multiplyRequest">
 <wsdl:part name="multiplicand1" type="xsd:double"/>
 <wsdl:part name="multiplicand2" type="xsd:double"/>
 </wsdl:message>
 <wsdl:message name="multiplyResponse">
 <wsdl:part name="return" type="xsd:double"/>
 </wsdl:message>
 <wsdl:portType name="Calculator">
 <wsdl:operation name="multiply" parameterOrder="multiplicand1 multiplicand2">
 <wsdl:input message="intf:multiplyRequest" name="multiplyRequest"/>

C H A P T E R 6

Web Services Applications

Web Services Description Language 95
 Apple Computer, Inc. November 2002

 <wsdl:output message="intf:multiplyResponse" name="multiplyResponse"/>
 </wsdl:operation>
 <wsdl:operation name="divide" parameterOrder="dividend divisor">
 <wsdl:input message="intf:divideRequest" name="divideRequest"/>
 <wsdl:output message="intf:divideResponse" name="divideResponse"/>
 </wsdl:operation>
 <wsdl:operation name="subtract" parameterOrder="minuend subtrahend">
 <wsdl:input message="intf:subtractRequest" name="subtractRequest"/>
 <wsdl:output message="intf:subtractResponse" name="subtractResponse"/>
 </wsdl:operation>
 <wsdl:operation name="add" parameterOrder="addend1 addend2">
 <wsdl:input message="intf:addRequest" name="addRequest"/>
 <wsdl:output message="intf:addResponse" name="addResponse"/>
 </wsdl:operation>
 </wsdl:portType>
 <wsdl:binding name="CalculatorSoapBinding" type="intf:Calculator">
 <wsdlsoap:binding style="rpc" transport="http://schemas.xmlsoap.org/soap/http"/>
 <wsdl:operation name="multiply">
 <wsdlsoap:operation soapAction=""/>
 <wsdl:input name="multiplyRequest">
 <wsdlsoap:body encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"
namespace="http://noss.apple.com/cgi-bin/WebObjects/Calculator.woa/ws/Calculator"
use="encoded"/>
 </wsdl:input>
 <wsdl:output name="multiplyResponse">
 <wsdlsoap:body encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"
namespace="http://noss.apple.com/cgi-bin/WebObjects/Calculator.woa/ws/Calculator"
use="encoded"/>
 </wsdl:output>
 </wsdl:operation>
 <wsdl:operation name="divide">
 <wsdlsoap:operation soapAction=""/>
 <wsdl:input name="divideRequest">
 <wsdlsoap:body encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"
namespace="http://noss.apple.com/cgi-bin/WebObjects/Calculator.woa/ws/Calculator"
use="encoded"/>
 </wsdl:input>
 <wsdl:output name="divideResponse">
 <wsdlsoap:body encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"
namespace="http://noss.apple.com/cgi-bin/WebObjects/Calculator.woa/ws/Calculator"
use="encoded"/>

96 Web Services Description Language
 Apple Computer, Inc. November 2002

C H A P T E R 6

Web Services Applications

 </wsdl:output>
 </wsdl:operation>
 <wsdl:operation name="subtract">
 <wsdlsoap:operation soapAction=""/>
 <wsdl:input name="subtractRequest">
 <wsdlsoap:body encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"
namespace="http://noss.apple.com/cgi-bin/WebObjects/Calculator.woa/ws/Calculator"
use="encoded"/>
 </wsdl:input>
 <wsdl:output name="subtractResponse">
 <wsdlsoap:body encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"
namespace="http://noss.apple.com/cgi-bin/WebObjects/Calculator.woa/ws/Calculator"
use="encoded"/>
 </wsdl:output>
 </wsdl:operation>
 <wsdl:operation name="add">
 <wsdlsoap:operation soapAction=""/>
 <wsdl:input name="addRequest">
 <wsdlsoap:body encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"
namespace="http://noss.apple.com/cgi-bin/WebObjects/Calculator.woa/ws/Calculator"
use="encoded"/>
 </wsdl:input>
 <wsdl:output name="addResponse">
 <wsdlsoap:body encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"
namespace="http://noss.apple.com/cgi-bin/WebObjects/Calculator.woa/ws/Calculator"
use="encoded"/>
 </wsdl:output>
 </wsdl:operation>
 </wsdl:binding>
 <wsdl:service name="CalculatorService">
 <wsdl:port binding="intf:CalculatorSoapBinding" name="Calculator">
 <wsdlsoap:address location="http://noss.apple.com/cgi-bin/WebObjects/
Calculator.woa/ws/Calculator"/>
 </wsdl:port>
 </wsdl:service>
</wsdl:definitions>

C H A P T E R 6

Web Services Applications

Consuming Web Services 97
 Apple Computer, Inc. November 2002

While somewhat verbose, WSDL documents provide Web service consumers a
detailed description of the service. You don’t have to worry about interpreting or
modifying WSDL documents, however. WebObjects provides programming
interfaces to most of the properties an application needs to invoke Web service
operations.

Consuming Web Services

To create a Web service client project using Project Builder, you create a WebObjects
application project and tell the Assistant to add the Web services frameworks.

Listing 6-3 shows a helper class used to consume Calculator operations.

98 Consuming Web Services
 Apple Computer, Inc. November 2002

C H A P T E R 6

Web Services Applications

Listing 6-3 CalculatorClient.java class

import java.net.*;
import java.util.Enumeration;

import com.webobjects.foundation.*;
import com.webobjects.webservices.client.*;

public class CalculatorClient extends Object {

 /**
 * Object through which the Web service's operations are invoked.
 */
 private WOWebServiceClient _service_client = null;

 /**
 * Address for the Web service's WSDL document.
 */
 private String _service_address = "http://noss.apple.com/cgi-bin/WebObjects/
Calculator.woa/ws/Calculator?wsdl";

 /**
 */
 public CalculatorClient() {
 super();
 }

 /**
 * Obtains the Web service's operation names.
 * @return the Web service's operation names.
 */
 public NSArray operations() { //1
 NSArray operations = serviceClient().operationsForService(serviceName());
 NSMutableArray operation_names = new NSMutableArray();
 Enumeration operations_enumerator = operations.objectEnumerator();
 while (operations_enumerator.hasMoreElements()) {
 WOWebServiceOperation operation =
(WOWebServiceOperation)operations_enumerator.nextElement();
 operation_names.addObject((String)operation.name());
 }
 return operation_names;

C H A P T E R 6

Web Services Applications

Consuming Web Services 99
 Apple Computer, Inc. November 2002

 }

 /**
 * Invokes the Web service's operations.
 * @param operation operation to invoke;
 * @param arguments argument list;
 * @return value returned by the operation.
 */
 public Double invoke(String operation, Object[] arguments) { //2
 Object result = serviceClient().invoke(serviceName(), operation, arguments);
 return (Double)result;
 }

 /**
 * Obtains the Web service name.
 * Normally one WSDL file describes one Web service,
 * but it could describe one or more services.
 * @return Web service name.
 */
 public String serviceName() {
 return (String)serviceClient().serviceNames().objectAtIndex(0);
 }

 /**
 * Obtains an agent through which service operations are invoked.
 * @return service agent.
 */
 private WOWebServiceClient serviceClient() { //3
 if (_service_client == null) {
 _service_client = clientFromAddress(_service_address);
 }
 return _service_client;
 }

 /**
 * Obtains a Web service client object through which
 * service operations can be invoked.
 * @return Web service client object.
 */
 private static WOWebServiceClient clientFromAddress(String address) {
 WOWebServiceClient service_client = null;

100 Consuming Web Services
 Apple Computer, Inc. November 2002

C H A P T E R 6

Web Services Applications

 // Create the Web service's URL.
 URL url;
 try {
 url = new URL(address);
 }

 catch (MalformedURLException e) {
 url = null;
 }

 // Get a service-client object.
 service_client = new WOWebServiceClient(url);

 return service_client;
 }

}

Some of the methods in Listing 6-3 have numbers on the far right of the line of code.
The following list explains these methods.

1. The operations method uses WebObjects API that extracts information
contained in the WSDL document provided by the Web service. In this case it
obtains the names of the operations the Web service provides and returns them
as an NSArray.

2. The invoke method takes an operation name and an array of arguments, invokes
the operation, and returns the result.

3. The serviceClient method obtains and returns a WOWebServiceClient object;
this is the object through which Web service operations are invoked. The object
can be used to make many operation invocations. Notice that only one instance
of WOWebServiceClient is used throughout the life of a CalculatorClient object.

Figure 6-1 presents a possible user interface for the Calculator Web service.

C H A P T E R 6

Web Services Applications

Consuming Web Services 101
 Apple Computer, Inc. November 2002

Figure 6-1 Web page that uses the Calculator Web service

Figure 6-2 shows the Web component that determines the layout of the Web
Calculator user interface elements. Listing 6-4 displays the business logic behind the
component. As you can see, WebObjects provides facilities to easily consume Web
services.

102 Consuming Web Services
 Apple Computer, Inc. November 2002

C H A P T E R 6

Web Services Applications

Figure 6-2 Web component that lays out user interface elements for the Web Calculator
application

Listing 6-4 Business logic behind Web Calculator’s user interface

import java.lang.*;

import com.webobjects.foundation.*;
import com.webobjects.appserver.*;
import com.webobjects.eocontrol.*;
import com.webobjects.eoaccess.*;

public class Main extends WOComponent {

 // User input: operation to invoke. Linked to pop-up menu.

C H A P T E R 6

Web Services Applications

Consuming Web Services 103
 Apple Computer, Inc. November 2002

 protected String operation;

 // User input: operands. Linked to text fields.
 protected String first_number_as_string;
 protected String second_number_as_string;

 // Operation output: result of operation. Linked to disabled text field.
 protected String operation_result_as_string;

 // Object used to invoke the Calculator Web service's operations.
 protected CalculatorClient calculator_client;

 public Main(WOContext context) {
 super(context);

 // Create the Calculator service client.
 calculator_client = new CalculatorClient();
 }

 // Gets values entered in text fields, invokes the operation,
 // and puts the result in the output text field.
 public WOComponent calculate() {
 try {
 // Create argument values.
 double argument1 = Double.parseDouble(first_number_as_string);
 double argument2 = Double.parseDouble(second_number_as_string);

 // Create argument list.
 Object[] arguments = { new Double(argument1), new Double(argument2) };

 // Invoke the operation.
 Double result = calculator_client.invoke(operation, arguments);
 double result_value = result.doubleValue();

 first_number_as_string = Double.toString(argument1);
 second_number_as_string = Double.toString(argument2);
 operation_result_as_string = Double.toString(result_value);
 }

 catch (NumberFormatException nfe) {
 nfe.printStackTrace();

104 Direct to Web Services
 Apple Computer, Inc. November 2002

C H A P T E R 6

Web Services Applications

 }

 return null;
 }
}

Direct to Web Services

Similar to Direct to Java Client and Direct to Web, the Direct to Web Services
approach to Web service development uses a data model and rule sets to generate
Web services. However, when you first run a Direct to Web Services application,
there’s only a default Web service configured. This service is not enabled and
contains no operations.

To add Web services and Web service operations to the application, use the Web
Services Assistant. With it you define an operation’s parameters and return values.
In addition, you determine whether the operation’s result is returned as an array of
enterprise-object instances or as a SOAP document, which can be traversed using
the NSDictionary class.

The following sections provide an example of how Direct to Web Services can be
used to develop a simple Web service with a single operation.

Developing a Direct to Web Services Application
Just like Direct to Web and Direct to Java Client, a good data model is essential when
developing a Direct to Web Services application. Figure 6-3 shows a data model
with an entity called Listing, which contains attributes that can store information
that a real estate agent collects about properties she wants to sell. Potential buyers
can also use it to find their ideal house.

C H A P T E R 6

Web Services Applications

Direct to Web Services 105
 Apple Computer, Inc. November 2002

Figure 6-3 Data model with the Listing entity

You configure Direct to Web Services applications using the Web Services
Assistant. The Assistant allows you to effortlessly define services and service
operations. Consumers can add, update, and delete records using the Web service
operations you define. You can also define operations that consumers can use to
search your data store.

106 Direct to Web Services
 Apple Computer, Inc. November 2002

C H A P T E R 6

Web Services Applications

The first thing you do is create a Direct to Web Services application with Project
Builder. You tell the Project Builder Assistant which data models you want to use
and it creates an application ready for you to configure with the Web Services
Assistant. Figure 6-4 shows how a Web service application that provides a Web
service called RealEstate can be configured with the Web Services Assistant.

Figure 6-4 Defining an operation’s parameters with the Web Services Assistant

Figure 6-5 shows how return values are added to the operation definition.

C H A P T E R 6

Web Services Applications

Direct to Web Services 107
 Apple Computer, Inc. November 2002

Figure 6-5 Adding return values to an operation in the Web Services Assistant

After saving this configuration the findListingsByAskingPrice operation of the
RealEstate service is ready to be consumed by an application. To facilitate operation
debugging, the Web Services Assistant can generate a test client, which you can use
to enter arguments and see the corresponding result, as Figure 6-6 demonstrates.

108 Direct to Web Services
 Apple Computer, Inc. November 2002

C H A P T E R 6

Web Services Applications

Figure 6-6 Testing the findListingsByAskingPrice operation with the Web
Services Assistant test client

This section showed you how Direct to Web Services makes it simple to develop
Web service operations that access a data store. You can also freeze an operation, in
which case Direct to Web Services generates a Web component. After an operation
is frozen, you cannot configure it with the Web Services Assistant. You can also use
Rule Editor to perform complex customizations.

C H A P T E R 6

Web Services Applications

Direct to Web Services 109
 Apple Computer, Inc. November 2002

Consuming Services Provided by a Direct to Web
Services Application
This section shows you how Web services developed using Direct to Web Services
can be consumed. At first you might want to make sure that you get the correct
results using a simple application. Listing 6-5 and Listing 6-6 are part of such an
application, while Figure 6-7 (page 113) shows its output.

Listing 6-5 Application.java class in simple Web service consumer project

import com.webobjects.appserver.*;
import com.webobjects.webservices.support.xml.WOStringKeyMap;

public class Application extends WOApplication {

 public static void main(String argv[]) {
 WOApplication.main(argv, Application.class);
 }

 public Application() {
 super();
 System.out.println("Welcome to " + this.name() + "!");

 testService();
 }

 public testService() {
 ServiceClient serviceClient = new ServiceClient();

 Object[] arguments = { new Integer(0), new Double(200000), new Double(350000) };

 Object[] listings = (Object[])serviceClient.invoke("findListingsByAskingPrice",
arguments);

 System.out.println();
 System.out.println();
 System.out.println("Listings found:");
 System.out.println();

110 Direct to Web Services
 Apple Computer, Inc. November 2002

C H A P T E R 6

Web Services Applications

 for (int i = 0; i < listings.length; i++) {
 WOStringKeyMap key_map = (WOStringKeyMap)listings[i];
 String address = key_map.valueForKey("street") + ", " +
key_map.valueForKey("city") + ", " + key_map.valueForKey("state") + " " +
key_map.valueForKey("zip");
 String agent = key_map.valueForKey("agentFirstName") + " " +
key_map.valueForKey("agentLastName");

 System.out.println("Lot size (square feet): " +
key_map.valueForKey("lotSqFt"));
 System.out.println("Number of bedrooms: " + key_map.valueForKey("bedrooms"));
 System.out.println("Number of bathrooms: " + key_map.valueForKey("bathrooms"));
 System.out.println("Year built: " + key_map.valueForKey("yearBuilt"));
 System.out.println("Address: " + address);
 System.out.println("Agent: " + agent);
 System.out.println();
 }

 System.out.println();
 }
}

Listing 6-6 ServiceClient.java class in simple Web service client project

import com.webobjects.foundation.*;
import com.webobjects.appserver.*;
import com.webobjects.webservices.client.*;

import java.net.*;
import java.util.Enumeration;

public class ServiceClient extends Object {
 private WOWebServiceClient _service_client = null;

 public ServiceClient() {

super();
 }

 /**
 * Invokes a Web service operation.

C H A P T E R 6

Web Services Applications

Direct to Web Services 111
 Apple Computer, Inc. November 2002

 * @return operation result.
 */
 public Object invoke(String operation, Object[] arguments) {
 // Invoke operation.
 Object result = serviceClient().invoke(serviceName(), operation, arguments);

 return result;
 }

 /**
 * Obtains a Web service client object through which service operations

 * can be invoked.
 * @return service client.
 */
 private WOWebServiceClient serviceClient() {
 if (_service_client == null) {
 // Address for the Web service's WSDL document.
 String service_address = "http://noss.apple.com/cgi-bin/WebObjects/
RealEstate.woa/ws/RealEstate?wsdl";

 _service_client = clientFromAddress(service_address);
 }

 return _service_client;
 }

/**
 * Obtains the Web service name.
 * Normally one WSDL file describes one Web service,
 * but it could describe one or more services.
 * @return Web service name.
 */

 public String serviceName() {
 return (String)serviceClient().serviceNames().objectAtIndex(0);
 }

 /**
 * Obtains a Web service client object through which service operations

 * can be invoked.
 * @return Web service client object.
 */

112 Direct to Web Services
 Apple Computer, Inc. November 2002

C H A P T E R 6

Web Services Applications

 private static WOWebServiceClient clientFromAddress(String address) {
 WOWebServiceClient service_client = null;

 // Create the Web service's URL.
 URL url;
 try {
 url = new URL(address);
 }

 catch (MalformedURLException e) {
 url = null;
 }

 // Get a service client object.
 service_client = new WOWebServiceClient(url);

 return service_client;
 }
}

C H A P T E R 6

Web Services Applications

Direct to Web Services 113
 Apple Computer, Inc. November 2002

Figure 6-7 Console output of simple Web service client project

Finally, a slightly refined user interface might look like the Web page in Figure 6-8.

114 Choosing a Web Service Development Approach
 Apple Computer, Inc. November 2002

C H A P T E R 6

Web Services Applications

Figure 6-8 User interface of Web service client application

Choosing a Web Service Development Approach

Like Direct to Web and Direct to Java Client, you should favor the Direct to Web
Services approach because it provides you with a working application with little
effort on your part. This approach is especially useful when the main purpose of the
application is to provide Web services that perform data-store operations for the
service consumers.

When you have tested business logic for which you want to provide a Web service
front end, you should use the Web services approach. Of course, you can combine
the two approaches to build flexible and robust Web service applications.

115
 Apple Computer, Inc. November 2002

C H A P T E R 7

7 J2EE Support

Sun’s J2EE (Java 2 Platform, Enterprise Edition) aims to lay out an infrastructure in
which solutions (components or applications) from different vendors can work
together and share resources. In addition, it provides a framework within which
multitier applications can be seamlessly deployed.

Enterprise JavaBeans (EJB) is an important part of J2EE. It provides an environment
in which components from several manufacturers can be assembled into a working
application. The application assembler, with deep knowledge of the requirements
of the business, can choose the component that best matches the task at hand. For
instance, she could use transaction-processing beans from one company; customer,
order, and product beans from another vendor; and shipping beans from a third
provider. She would then end up with an application capable of accepting orders,
charging the customer, and process shipments without having to write code.

JavaServer Pages (JSP) and servlets are also part of the J2EE architecture. JSP is a
specification that defines interfaces that vendors can implement to provide
developers the ability to create dynamic Web pages, which are files with the
extension .jsp. Web servers that support JSP interpret these files and create servlets
to process HTTP requests and produce responses. Servlets are server plug-ins
(specialized applications) that extend the capabilities of your Web server. They
provide a straightforward deployment mechanism for your applications.

Java Naming and Directory Service (JNDI) provides a mechanism through which
components and applications can locate shared resources. For example, it allows
you to place a server-side resource anywhere in your system, while the application
that uses the resource needs to know only its name, not the name or IP address of
the host in which it resides.

The following sections give a more detailed explanation of each of these
technologies.

116 Enterprise JavaBeans
 Apple Computer, Inc. November 2002

C H A P T E R 7

J2EE Support

Enterprise JavaBeans

Enterprise JavaBeans (EJB) is a specification that provides an infrastructure through
which vendors can develop solutions that can be used by other vendors. The major
part of these solutions is enterprise beans. Enterprise beans are business objects that
contain logic used to perform specific tasks. They are similar to enterprise objects in
WebObjects, but can be used in application servers by multiple vendors.

When an application uses enterprise beans, it’s said that the application is a client
of the bean. (Beans can themselves be clients of other beans.) Client applications
don’t access enterprise-bean instances directly. Instead, they interact with bean
proxies. These proxies contain only the bean’s methods that clients are allowed to
invoke. Other implementation-specific methods are hidden from the client,
facilitating changes and updates to the bean’s business logic.

Enterprise beans are deployed in an EJB container (or bean container). The EJB
container manages the life cycle of enterprise-bean instances. In addition, the bean
container can perform any database work required by the bean, allowing the bean
developer to concentrate on business problems. Because client applications interact
with bean proxies, not the bean instances themselves, bean containers are free to
implement the EJB specification in a way that maximizes efficiency and
performance, without affecting the functionality of client applications or the
enterprise beans they contain. When necessary, however, enterprise beans can
execute database transactions themselves.

To make enterprise beans available to WebObjects applications, you need to create
a bean framework. Project Builder can assist you in creating such frameworks. You
can create a bean framework using third-party enterprise beans, either from source
code or JAR (Java archive) files, or you can write beans from scratch.

For more information on Enterprise JavaBeans in WebObjects, see Inside WebObjects:
Enterprise JavaBeans.

C H A P T E R 7

J2EE Support

JavaServer Pages and Servlets 117
 Apple Computer, Inc. November 2002

JavaServer Pages and Servlets

Servlets are generic server extensions that expand the functionality of an
application container. By deploying WebObjects applications as servlets running
inside servlet containers, you can take advantage of the features that your servlet
container offers. Alternatively, you can deploy your applications using an HTTP
adaptor that talks to your Web server.

Deploying applications as servlets can be more efficient than using HTTP adaptors.
A servlet is loaded once inside a servlet container. Concurrent requests are handled
by separate threads, providing you with a high degree of scalability.

JSP is a technology that allows you to write dynamic Web pages that use Java beans
or Web components. JSP pages are compiled into servlets when users access them.
The servlets then process the request and typically return a Web page to the user’s
Web browser.

For more information on JSP and servlets, see Inside WebObjects: JavaServer Pages
and Servlets.

Java Naming and Directory Interface

WebObjects contains an implementation of Java Naming and Directory Interface
(JNDI). Through it WebObjects applications can access multiple naming and
directory services, including Lightweight Directory Access Protocol (LDAP),
NetWare Directory Services (NDS), Domain Name System (DNS), and Network
Information Service (NIS).

JNDI is used in EJB applications to locate beans, data stores, and other resources.
For more information on JNDI support in WebObjects, see Inside WebObjects: Using
EOModeler.

118 JavaServer Pages and Servlets
 Apple Computer, Inc. November 2002

C H A P T E R 7

J2EE Support

Internet and Intranet Deployment 119
 Apple Computer, Inc. November 2002

C H A P T E R 8

8 Choosing Your Approach

Choosing between the four application development approaches, Java Client,
Direct to Java Client, Web, and Direct to Web, is the first task you face as
a WebObjects developer. To make the choice you need to consider the
following issues:

� Are you planning to deploy over the Internet or an intranet?

� What are your user interface requirements?

� How quickly do you need to develop the application?

The following sections, “Internet and Intranet Deployment” (page 119), “User
Interface Requirements” (page 120), and “Rapid Development Considerations”
(page 121), explore the approaches in more detail from the perspective of each
of these issues. You can also combine approaches as described in “Combining
Approaches” (page 122).

Internet and Intranet Deployment

The Web application approach is the best approach for deploying applications that
users access on the Internet on an intranet. A user on any Internet-enabled computer
with a Web browser can access a Web application.

You can also use Direct to Web to create a Web application; however, the user
interface generated is generally not flexible enough for public websites. But you can
use Direct to Web reusable components as the basis of elaborate Web applications.
See “Combining Approaches” (page 122) for more information.

120 User Interface Requirements
 Apple Computer, Inc. November 2002

C H A P T E R 8

Choosing Your Approach

You can also provide and consume Web services on the Internet or an intranet.
However, due to the emerging nature of Web service technology, you should take
into account security issues before making Web services available on the Internet.

Java Client and Direct to Java Client applications work great on an intranet but are
generally unsuitable for Internet deployment because they contain client code that
runs on the user’s computer. The user must wait for this code to download and the
quality of the user’s Java virtual machine determines whether the application runs
correctly and efficiently. Java Web Start can help in making Internet deployment of
Java Client applications more user friendly.

User Interface Requirements

The WebObjects application development approaches differ in the richness and
response times of their user interfaces and the ease in which you can make user
interfaces with specific layout and flow requirements.

Rich Widget Selection and Fast Response Times
The Java Client and Direct to Java Client approaches offer user interfaces with
multiple windows and a large selection of widgets, features commonly found in
client-server applications. If your application needs these features, you should use
one of these approaches. The Web-based user interface employed in Web and Direct
to Web applications offers much more limited possibilities.

When you need fast response times from your user interface (if you’re displaying
and updating real-time data, for example), you should use the Java Client or Direct
to Java Client approaches. The user’s computer manages the highly interactive user
interface.

The drawback of the Java Client approaches is that you need to be sure the client
code is on the user’s computer when the user runs your application. You can either
install it on the user’s computer in advance like a standalone application, which can
be inconvenient, or download it as an applet, which can take a long time. However,
Java Web Start goes a great way towards eliminating this problem.

C H A P T E R 8

Choosing Your Approach

Rapid Development Considerations 121
 Apple Computer, Inc. November 2002

Specific Layout and Flow Requirements
If you plan to create a Web application with specific page design and flow
requirements, you should use the Web application approach. The alternative, Direct
to Web, creates applications with a predefined structure that limits the user
interface’s flexibility. Direct to Web is highly customizable, but you need to have a
strong understanding of WebObjects before you can effectively customize the flow
of a Direct to Web application.

Your decision is similar if your application needs the rich and fast user interface the
Java Client approaches offer. If the user interface has specific layout and flow
requirements, you should use the Java Client approach over the Direct to Java
Client approach.

Keep in mind that the Direct to Java Client approach—including the user interface
it generates—is designed expressly for viewing and editing databases, especially
large ones. If your application requires this capability, you will find the Direct to
Java Client user interface well-suited for the task.

Rapid Development Considerations

Using the rapid development technologies that WebObjects provides, you can build
an application faster and with less effort than the Web, Java Client, and Web service
approaches require. You need to provide only the database–to–enterprise objects
mapping (the model) and WebObjects creates your application from it. However,
the rapid development approaches produce a very basic interface for your
application. You must be experienced with WebObjects development (especially
with Rule Editor and Interface Builder) to override it.

These types of applications are good candidates for the rapid development
approaches because their user interface limitations aren’t an issue:

� Database maintenance tools. These approaches create user interfaces optimized
for administering databases and are therefore well-suited for this type of
application.

122 Combining Approaches
 Apple Computer, Inc. November 2002

C H A P T E R 8

Choosing Your Approach

� Prototypes. You can quickly and easily test a model by creating a Direct to Web
or Direct to Java Client application based on the model. Using this application,
you can test whether the relationships and database integrity rules are correct.

� Data-driven applications. Direct to Web and Direct to Java Client can be used
to develop in-house applications for such tasks as bug and feature tracking,
customer account management, and writing online help. For internal-use
applications, the user interface refinement is not as important as their
development time, making these applications ideal candidates for the direct
development approaches.

Combining Approaches

WebObjects does not confine you to a single approach. You can switch your
approach as you develop your application or combine it with another approach.
This is possible in WebObjects because the business logic is encapsulated in
enterprise objects and not in the application.

The Web and Direct to Web approaches can be combined in many ways. You can
start with a Direct to Web application, freeze and customize pages, and add your
own pages. You can also start with a Web application and link its Web components
to Direct to Web pages.

Direct to Web also provides reusable components, of which the edit and list
components are used the most. If your application employs forms and lists that
work with enterprise objects, these components can save you a tremendous amount
of time.

You can also mix Java Client and Direct to Java Client applications. If you’re
developing a Java Client application and you need a Direct to Java Client controller
(a window that edits an enterprise object, for example), you can easily instantiate
one. Also, you can freeze an interface in Direct to Java Client and edit it with
Interface Builder.

C H A P T E R 8

Choosing Your Approach

Summary 123
 Apple Computer, Inc. November 2002

Summary

The advantages and disadvantages of the four application development approaches
are summarized in the following paragraphs.

The primary advantage of the Web application approach is its portability. Any user
with access to the Internet and a Web browser can use the application. Its
disadvantages are the limitations of the Web-based user interface—delays due to
round trips to the server and a limited widget set.

Direct to Web has the same advantages and limitations of the Web application
approach. However, it also allows you to develop data-driven applications
extremely quickly. The downside of Direct to Web is that it generates a rudimentary
user interface that may not be suitable for your application.

Java Client applications provide the rich and fast user interfaces of client-server
desktop applications. The disadvantage of this approach is portability. You need to
install or download the application on the user’s computer.

Direct to Java Client allows you to quickly develop data-driven Java Client
applications and therefore has the advantages and disadvantages of Java Client.
Also, like Direct to Web, Direct to Java Client imposes a particular user interface that
may not be suitable for your application.

Table 8-1 shows which of the four approaches is appropriate when considering the
scope, type of user interface, and development effort of your project.

Table 8-1 Development approaches for WebObjects applications

Direct to Java
Client Direct to Web

Java Client
application

Web
application

Internet x x

Intranet x x x x

Desktop x x

124 Where to Go From Here
 Apple Computer, Inc. November 2002

C H A P T E R 8

Choosing Your Approach

Where to Go From Here

Once you have decided upon an approach, you can go to companion documents
that cover the creation of WebObjects applications for each approach:

� Inside WebObjects: Java Client Desktop Applications

� Inside WebObjects: Web Applications

� Inside WebObjects: Developing Applications With Direct to Web

� Inside WebObjects: Web Services

Web browser x x

Simple
interface
(dynamic)

x x

Custom
interface
(fixed)

x x x x

Web services x x x x

Table 8-1 Development approaches for WebObjects applications (continued)

Direct to Java
Client Direct to Web

Java Client
application

Web
application

125
 Apple Computer, Inc. November 2002

A P P E N D I X A

A Document Revision History

Table A-1 describes the revisions to Inside WebObjects: WebObjects Overview.

Table A-1 Document revision history

Date Notes

September
2002

Revised to reflect changes made in WebObjects 5.2.

Added chapter about Web services support, including Direct to
Web Services.

Changed references to HTML-based application to Web application.

Combined contents of “HTML-Based Applications” and “Direct to
Web” chapters in one chapter, “Web Applications” (page 41).

January
2002

Revised to reflect changes made in WebObjects 5.1.

Combined contents of “Java Client Applications” and “Direct to
Java Client Applications” chapters in one chapter, “Desktop
Applications” (page 69).

Added chapter on J2EE support.

December
2000

First version of Inside WebObjects: WebObjects Overview.

126
 Apple Computer, Inc. November 2002

A P P E N D I X A

Document Revision History

127
 Apple Computer, Inc. November 2002

9 Glossary

application object An object (of the
WOApplication class) that represents a
single instance of a WebObjects application.
The application object’s main role is to
coordinate the handling of HTTP requests,
but it can also maintain application-wide
state information.

attribute In Entity-Relationship modeling,
an identifiable characteristic of an entity. For
example, lastName can be an attribute of an
Employee entity. An attribute typically
corresponds to a column in a database table.

business logic The rules associated with
the data in a database that typically encode
business policies. An example is
automatically adding late fees for overdue
items.

CGI (Common Gateway Interface) A
standard for interfacing external applications
with information servers, such as HTTP or
Web servers.

class In object-oriented languages such as
Java, a prototype for a particular kind of
object. A class definition declares instance
variables and defines methods for all
members of the class. Objects that have the
same types of instance variables and have
access to the same methods belong to the
same class.

Cocoa Object-oriented
application-development environment
tailored for the production of Mac OS X
applications.

column In a relational database, the
dimension of a table that holds values for a
particular attribute. For example, a table that
contains employee records might have a
LAST_NAME column that contains the
values for each employee’s last name.

database server A data storage and
retrieval system. Database servers typically
run on a dedicated computer and are
accessed by client applications over a
network.

Direct to Java Client A WebObjects
development approach that can generate a
Java Client application from a model.

Direct to Java Client Assistant A tool used
to customize a Direct to Java Client
application.

Direct to Web A WebObjects development
approach that can generate a Web
application from a model.

Direct to Web Services A WebObjects
development technology that can generate a
Web service application from a model.

G L O S S A R Y

128
 Apple Computer, Inc. November 2002

Direct to Web template A component used
in Direct to Web applications that can
generate a Web page for a particular task (for
example, a list page) for any entity.

dynamic element A dynamic version of an
HTML element. WebObjects includes a list of
dynamic elements with which you can build
Web components.

EJB container The execution environment
of EJB components. It’s managed by an EJB
server.

enterprise object An object that conforms
to the key-value coding protocol and whose
properties (instance data) can map to stored
data. An enterprise object brings together
stored data with methods for operating on
that data.

entity In Entity-Relationship modeling, a
distinguishable object about which data is
kept. For example, you can have an
Employee entity with attributes such as
lastName, firstName, address, and so on. An
entity typically corresponds to a table in a
relational database; an entity’s attributes, in
turn, correspond to a table’s columns.

Entity-Relationship modeling A
discipline for examining and representing
the components and interrelationships in a
database system. Also known as ER
modeling, this discipline factors a database
system into entities, attributes, and
relationships.

EOModeler A tool used to create and edit
models.

faulting A mechanism used by WebObjects
to increase performance whereby destination
objects of relationships are not fetched until
they are explicitly accessed.

fetch In Enterprise Objects applications, to
retrieve data from the database server into
the client application, usually into enterprise
objects.

foreign key An attribute in an entity that
gives it access to rows in another entity. This
attribute must be the primary key of the
related entity. For example, an Employee
entity can contain the foreign key deptID,
which matches the primary key in the entity
Department. You can then use deptID as the
source attribute in Employee and as the
destination attribute in Department to form a
relationship between the entities.

HTTP adaptor A process (or a part of one)
that connects WebObjects applications to a
Web server.

instance In object-oriented languages such
as Java, an object that belongs to (is a member
of) a particular class. Instances are created at
runtime according to the specification in the
class definition.

Interface Builder A tool used to create and
edit graphical user interfaces like those used
in Java Client applications.

Java Client A WebObjects development
approach that allows you to create graphical
user interface applications that run on the
user’s computer and communicate with a
WebObjects server.

G L O S S A R Y

129
 Apple Computer, Inc. November 2002

JFC (Java Foundation Classes) A set of
classes that implement graphical user
interface components, also called Swing
components.

JDBC An interface between Java platforms
and databases.

JNDI (Java Naming and Directory
Service) Protocol that provides a standard
API to naming and directory services.

key An arbitrary value (usually a string)
used to locate a datum in a data structure
such as a dictionary.

key-value coding The mechanism that
allows the properties in enterprise objects to
be accessed by name (that is, as key-value
pairs) by other parts of the application.

locking A mechanism to ensure that data
isn’t modified by more than one user at a
time and that data isn’t read as it is being
modified.

look In Direct to Web applications, one of
three user interface styles. The looks differ in
both layout and appearance.

method In object-oriented programming, a
procedure that can be executed by an object.

model An object (of the EOModel class)
that defines, in Entity-Relationship terms, the
mapping between enterprise object classes
and the database schema. This definition is
typically stored in a file created with the
EOModeler application. A model also
includes the information needed to connect
to a particular database server.

Model-View-Controller An
object-oriented programming paradigm in
which the functions of an application are
separated into the special knowledge (Model
objects), user interface elements (View
objects), and the interface that connects them
(the Controller object).

nib file File that contains the description of
a desktop-based user interface. The file is
created using Interface Builder.

object A programming unit that groups
together a data structure (instance variables)
and the operations (methods) that can use or
affect that data. Objects are the principal
building blocks of object-oriented programs.

primary key An attribute in an entity that
uniquely identifies rows of that entity. For
example, the Employee entity can contain an
empID attribute that uniquely identifies each
employee.

Project Builder Application used to
manage the development of a WebObjects
application or framework.

property In Entity-Relationship modeling,
an attribute or relationship.

record The set of values that describes a
single instance of an entity; in a relational
database, a record is equivalent to a row.

referential integrity The rules governing
the consistency of relationships.

G L O S S A R Y

130
 Apple Computer, Inc. November 2002

relational database A database designed
according to the relational model, which uses
the discipline of Entity-Relationship
modeling and the data design standards
called normal forms.

relationship A link between two entities
that’s based on attributes of the entities. For
example, the Department and Employee
entities can have a relationship based on the
deptID attribute as a foreign key in Employee,
and as the primary key in Department (note
that although the join attribute deptID is the
same for the source and destination entities
in this example, it doesn’t have to be). This
relationship would make it possible to find
the employees for a given department.

reusable component A component that can
be nested within other components and acts
like a dynamic element.

request A message conforming to the
Hypertext Transfer Protocol (HTTP) sent
from the user’s Web browser to a Web server
that asks for a resource like a Web page.

response A message conforming to the
Hypertext Transfer Protocol (HTTP) sent
from the Web server to the user’s Web
browser that contains the resource specified
by the corresponding request. The response
is typically a Web page.

row In a relational database, the dimension
of a table that groups attributes into records.

rule A specification used to customize the
interfaces of applications developed using
the rapid development technologies of
WebObjects.

Rule Editor A tool used to edit the rules in
applications developed using the rapid
development technologies of WebObjects.

rule system WebObjects feature used in
direct technologies, such as Direct to Java
Client, in order to dynamically generate an
application’s interface. The rule system
performs this process using data-model
information as well as rule sets.

session A period during which access to a
WebObjects application and its resources is
granted to a particular client (typically a
browser). Also an object (of the WOSession
class) representing a session.

table A two-dimensional set of values
corresponding to an entity. The columns of a
table represent characteristics of the entity
and the rows represent instances of the
entity.

to-many relationship A relationship in
which each source record has zero to many
corresponding destination records. For
example, a department has many employees.

to-one relationship A relationship in
which each source record has exactly one
corresponding destination record. For
example, each employee has one job title.

transaction A set of actions that is treated
as a single operation.

uniquing A mechanism to ensure that,
within a given context, only one object is
associated with each row in the database.

validation A mechanism to ensure that
user-entered data lies within specified limits.

G L O S S A R Y

131
 Apple Computer, Inc. November 2002

Web Assistant Tool used to customize a
Direct to Web application.

Web component An object (of the
WOComponent class) that represents a Web
page or a reusable portion of one.

Web page template HTML file that
specifies the overall appearance of a Web
page generated from a Web component.

Web Services Assistant Application used
to customize a Direct to Web Services
applications.

WebObjects Builder An application used
to edit Web components.

G L O S S A R Y

132
 Apple Computer, Inc. November 2002

133
© Apple Computer, Inc. November 2002

Index

A

Apache module API Web server 47
application instance 48
application object 46
application server 27
attribute 34

B

binding 42, 43
business logic 29, 38, 71

C

Calculator Web service 92–93
CGI Web server 47
class loader, Java Client 73
Client JDBC application 83
client-server application

See also multitier application
desktop 19
Internet 18
server side 77, 80

D

data model
database mapping 33
defined 31
direct technologies 23
rule system 72

development approach
desktop application 123
Internet 123

intranet 123
Web application 124
Web services 124
See also Java Client; Web application; Web

services
development tools

Interface Builder 86
Project Builder 26, 48
Rule Editor 63
Web Services Assistant 105
WebObjects Builder 42, 49

Direct to Java Client
defined 24
rapid application development 72
user interface 75, 121

Direct to Web
defined 23
example of 51
reusable components 67, 119
templates 59

Direct to Web application
advanced customization of 64–65
development of 61–65
edit page 55
edit-relationship page 56
inspect page 55
login page 51
look of 58
query-all page 52
toolbar 57
Web Assistant 60, 62

Direct to Web Services 104
Direct to Web Services application 24, 104–113

developing a 104–108
distributed application 91
documentation, WebObjects

installed 13
online 13

dynamic element 41, 44–45

I N D E X

134
© Apple Computer, Inc. November 2002

E

EJB 115, 116
Enterprise Object technology 25, 29–40, 71
enterprise-object class 29, 43
enterprise-object instance 30, 82
entity 34
event-handling logic 42

F, G

faulting 37
foreign key 34, 36

H

HTTP adaptor 17, 46

I

Interface Builder 86
Internet

application 18, 119
Java Client application 72, 120
Web services application 120

intranet
application 119
Java Client application 72, 120
Web services application 120

ISAPI 47

J

J2EE 115–117
defined 115
EJB 116

bean container 116
bean framework 116
defined 115

JNDI 115, 117
JSP 115, 117
servlet 117
servlets 48, 115

Java Client 70–84
class loader 73
Java Web Start 73

Java Client application 69–90
applets 73
client side 73, 74, 77, 80
customization 90
defined 19
development 90
Internet 72, 120
intranet 72, 120
localization 90
object distribution 71
partitioning enterprise objects 83, 85
security 74
server side 77, 80
synchronization 81–83
system administration 74
user interface 86–89

client system requirements 120
freezing 88

Java Web Start 73, 120
JavaScript 47
JDBC 25
JNDI 117

K

key-value coding 30

L

locking database rows 37

I N D E X

135
© Apple Computer, Inc. November 2002

M

Model-View-Controller (MVC) 32
multitier application 19, 71

Client JDBC 83
JDBC three tier 84

N, O

network application. See Internet; intranet
Nib files 76
NSAPI Web server 47

P

presentation logic 41, 42
primary key 34, 36
Project Builder 26, 48
prototypes 65, 122
Pure Java 26

Q

QuickTime 47

R

rapid application development
database maintenance tools 121
data-driven applications 122
direct technologies 23, 72
prototypes 122
rule system 72
user interface 121

RealEstate Web service 106
referential integrity, database 36
remote method invocation (RMI) 71
request-response cycle 46
Rule Editor 63
rule system

data model 72
direct technologies 60
rapid application development 72
user interface 81

rules 60, 72

S

security 71, 74, 85
servlets 48, 115
session 46
SOAP 91
state management 26, 42, 46

T

transaction management 36

U

uniquing 37
URL 16

V

validation, data 36

I N D E X

136
© Apple Computer, Inc. November 2002

W

Web application 41–67
architecture 46–48
business logic 41
development 41, 48–50
Internet 18
JavaScript 47
presentation logic 41
state management 42, 46
user interface 121
Web component 41, 42

Web Assistant 60, 62
Web browser 47
Web components

defined 19
embedding 45
Java file in 19
reusable 45

Web page
defined 16
template 16, 26, 42

Web publishing 15–18
Web server

Apache module API 47
CGI 47
defined 16
ISAPI 47
NSAPI 47
plug-in 48, 115
Web applications 47

Web service operations 21, 97
Web services 91–114

.NET 91
consuming 97–101
defined 21
publishing 93
security 120
SOAP 91
WSDL 93–97

Web services application
freezing operations 108
Internet 120
intranet 120
operations 100
testing a 107

Web Services Assistant 105
WEBOBJECT element 44
WebObjects Builder 42, 49
WOD file 42, 50
WSDL 93–97

X, Y, Z

XML 81

	WebObjects Overview
	Contents
	Figures, Listings, and Tables
	About This Document
	Why Read This Document
	Further Investigations

	Introduction
	Dynamic Web Publishing
	Client-Server Applications
	Web Applications
	Desktop Applications

	Web Services
	Rapid Development
	Direct to Web
	Direct to Java Client
	Direct to Web Services

	The WebObjects Advantage
	Streamlined Database Access
	Separation of Presentation Logic, Business Logic, and Data
	State Management
	Modular Development
	Pure Java
	Scalability and Performance

	Enterprise Objects
	What Is an Enterprise Object Class?
	Enterprise Objects and the Model-View-Controller Paradigm
	Mapping Data Entities to Database Tables
	WebObjects Support for Enterprise-Object Instances
	The Enterprise Objects Advantage

	Web Applications
	Web Applications—A Programmer’s View
	Separating Presentation Code From Event Handling Logic
	Separating Presentation Code From Business Logic
	Dynamic Elements
	Reusing Web Components
	Maintaining State

	Web Application Architecture
	Developing a Web Application
	Project Builder
	WebObjects Builder

	Guidelines for Choosing the Web Application Approach
	The Direct to Web Approach
	Direct to Web Architecture
	Developing a Direct to Web Application
	The Web Assistant
	Advanced Customization of Direct to Web Applications

	Advantages of the Direct to Web Approach
	Limitations of Direct to Web
	Choosing a Web Application Development Approach

	Desktop Applications
	Java Client Features
	Better User Experience
	Object Distribution
	The Best of WebObjects
	Rapid Application Development

	When to Use Java Client
	Two Approaches to Java Client
	Java Client Architecture
	Desktop User Interface
	Data Synchronization Between Client and Server

	Java Client and Other Multitier Systems
	Developing a Java Client Application
	Designing Enterprise Objects for Java Client
	Creating the User Interface—Java Client Approach
	Customizing the User Interface—Direct to Java Client Approach

	Choosing a Desktop Application Development Approach

	Web Services Applications
	Providing Web Services
	A Sophisticated Calculator
	Publishing the Calculator Class as a Web Service

	Web Services Description Language
	Consuming Web Services
	Direct to Web Services
	Developing a Direct to Web Services Application
	Consuming Services Provided by a Direct to Web Services Application

	Choosing a Web Service Development Approach

	J2EE Support
	Enterprise JavaBeans
	JavaServer Pages and Servlets
	Java Naming and Directory Interface

	Choosing Your Approach
	Internet and Intranet Deployment
	User Interface Requirements
	Rich Widget Selection and Fast Response Times
	Specific Layout and Flow Requirements

	Rapid Development Considerations
	Combining Approaches
	Summary
	Where to Go From Here

	Document Revision History
	Glossary
	Index

