

I n s i d e W e b O b j e c t s

Enterprise JavaBeans

November 2002



 Apple Computer, Inc.
© 2001–2002 Apple Computer, Inc.
All rights reserved.
No part of this publication may be
reproduced, stored in a retrieval
system, or transmitted, in any form or
by any means, mechanical, electronic,
photocopying, recording, or
otherwise, without prior written
permission of Apple Computer, Inc.,
with the following exceptions: Any
person is hereby authorized to store
documentation on a single computer
for personal use only and to print
copies of documentation for personal
use provided that the documentation
contains Apple’s copyright notice.
The Apple logo is a trademark of
Apple Computer, Inc.
Use of the “keyboard” Apple logo
(Option-Shift-K) for commercial
purposes without the prior written
consent of Apple may constitute
trademark infringement and unfair
competition in violation of federal
and state laws.
No licenses, express or implied, are
granted with respect to any of the
technology described in this
document. Apple retains all
intellectual property rights associated
with the technology described in this
document. This document is
intended to assist application
developers to develop applications
only for Apple-labeled or
Apple-licensed computers.
Every effort has been made to ensure
that the information in this document
is accurate. Apple is not responsible
for typographical errors.
Apple Computer, Inc.
1 Infinite Loop
Cupertino, CA 95014
408-996-1010
Apple, the Apple logo, Mac,
Macintosh, and WebObjects are
trademarks of Apple Computer, Inc.,
registered in the United States and
other countries.

Enterprise Objects and trademark is a
of NeXT Software, Inc., registered in
the United States and other countries.
Java and all Java-based trademarks
are trademarks or registered
trademarks of Sun Microsystems, Inc.
in the United States and other
countries.
Simultaneously published in the
United States and Canada.

Even though Apple has reviewed this
manual, APPLE MAKES NO
WARRANTY OR REPRESENTATION,
EITHER EXPRESS OR IMPLIED, WITH
RESPECT TO THIS MANUAL, ITS
QUALITY, ACCURACY,
MERCHANTABILITY, OR FITNESS
FOR A PARTICULAR PURPOSE. AS A
RESULT, THIS MANUAL IS SOLD “AS
IS,” AND YOU, THE PURCHASER, ARE
ASSUMING THE ENTIRE RISK AS TO
ITS QUALITY AND ACCURACY.

IN NO EVENT WILL APPLE BE LIABLE
FOR DIRECT, INDIRECT, SPECIAL,
INCIDENTAL, OR CONSEQUENTIAL
DAMAGES RESULTING FROM ANY
DEFECT OR INACCURACY IN THIS
MANUAL, even if advised of the
possibility of such damages.

THE WARRANTY AND REMEDIES SET
FORTH ABOVE ARE EXCLUSIVE AND
IN LIEU OF ALL OTHERS, ORAL OR
WRITTEN, EXPRESS OR IMPLIED. No
Apple dealer, agent, or employee is
authorized to make any modification,
extension, or addition to this warranty.

Some states do not allow the exclusion or
limitation of implied warranties or
liability for incidental or consequential
damages, so the above limitation or
exclusion may not apply to you. This
warranty gives you specific legal rights,
and you may also have other rights which
vary from state to state.

Contents

Figures, Listings, and Tables 9

Chapter 1 About This Document 13

Chapter 2 Introduction to Enterprise JavaBeans 17

Enterprise JavaBeans 17
Enterprise JavaBeans in WebObjects 19

Chapter 3 Developing Session Beans 21

Developing a Session Bean in Mac OS X 21
Creating the Bean Framework 22
Analyzing the Hello Bean’s Files 25
Adding Business Logic to the Bean 30
Building the Bean Framework 30
Creating the Client Application 30
Adding Business Logic to the Client Application 32

Modify Session.java 32
Modify Main.wo 34
Modify Main.java 35

Configuring the Container 36
Running the Hello_Client Application 37

Developing a Session Bean in Windows 38
Creating the Bean Framework 38
Adding Business Logic to the Bean 39
Building the Framework 39
Creating the Client Application Project 39
Adding the Hello Bean Framework to the Hello_Client Project 40
Creating the Container Configuration Files 40
3
  Apple Computer, Inc. November 2002

C O N T E N T S

Adding Business Logic to the Client Application 41
Modify Session.java 41
Modify Main.wo 42
Modify Main.java 43

Configuring the Container 43
Running the Hello_Client Application 44

Chapter 4 Developing Entity Beans 45

Developing an Entity Bean From a Data Model 45
Creating an Empty Bean Framework 46
Generating Enterprise-Bean Source Files From a Model File Using
EOBeanAssistant 46

Using an Entity-Bean Framework 52
Developing the Application Project 53
Defining Data Sources 53
Mapping Enterprise Beans to Data-Store Tables 53
Configuring the Transaction Manager 54
Creating, Retrieving, and Removing Person Beans 55

Advanced Entity-Bean Development 60
Bean-Managed Persistence 60
Data Access Objects 68

Chapter 5 Developing Bean Frameworks 71

Adding Source Files to a Bean- Framework Project 71
Adding JAR Files to a Bean Framework Project 72
Creating Frameworks From Bean JAR Files in Windows 73
Adding CMP Fields to an EJB Deployment Descriptor 74
Generating EJB Stubs 76

Chapter 6 Configuring Applications 79

Configuration Overview 81
Configuring the Transaction Manager 81
Configuring the EJB Container 82
4
  Apple Computer, Inc. November 2002

C O N T E N T S

Configuring the Persistence Manager 84
GlobalTransactionConfiguration.xml 84
CMPConfiguration.xml 84

Transaction Manager Configuration 85
Persistence Manager Configuration 86

Mapping Enterprise Beans to Data-Store Tables 87
The Mapping File 87
Primary Keys 88

Defining Data Sources 92
Container Configuration 93

Containers Section 93
Facilities Section 96

Using External Containers 96
Communication Transport Between Bean Clients and Containers 98
Generating the EJB Configuration Files 98
EJB Container Operation Logging 99

Chapter 7 Configuration Reference 101

Elements of the Component-Managed Persistence Configuration File 102
bind-xml element 104
cache-type element 105
class element 105
field element 107
key-generator element 110
ldap element 111
map-to element 112
mapping element 112
param element 113
sql element 113

Elements of the Transaction Manager Configuration File 114
config element 114
connector element 115
dataSource element 115
domain element 116
limits element 116
resources element 117
5
  Apple Computer, Inc. November 2002

C O N T E N T S

Elements of the Container Configuration File 117
connection-manager element 120
connector element 120
connectors element 121
container-system element 121
containers element 122
ejb-ref element 122
ejb-ref-location element 123
entity-bean element 123
entity-container element 124
env-entry element 125
facilities element 125
jndi-context element 126
jndi-enc element 126
intra-vm-server element 127
managed-connection-factory element 127
method element 128
method-params element 129
method-permission element 130
method-transaction element 130
openejb element 131
properties element 131
property element 131
query element 132
remote-jndi-contexts element 132
resource element 133
resource-ref element 133
role-mapping element 135
security-role element 135
security-role-ref element 136
security-service element 136
services element 137
stateful-bean element 137
stateful-session-container element 138
stateless-bean element 139
stateless-session-container element 140
transaction-service element 140
6
  Apple Computer, Inc. November 2002

C O N T E N T S

Appendix A Document Revision History 143

Glossary 145

Index 147
7
  Apple Computer, Inc. November 2002

C O N T E N T S
8
  Apple Computer, Inc. November 2002

9



 Apple Computer, Inc. November 2002

Figures, Listings, and Tables

Chapter 3

Developing Session Beans

21

Figure 3-1 Hello project—the EJB Deployment target’s members 29
Figure 3-2 Hello project—the EJB 29
Figure 3-3 Hello_Client project—Hello.framework in Frameworks

group 32
Figure 3-4 Output of the Hello_Client application 38
Listing 3-1 HelloHome.java file 25
Listing 3-2 Hello.java file 26
Listing 3-3 HelloBean.java file 27
Listing 3-4 ejb-jar.xml file 28
Listing 3-5 TransactionManagerConfiguration.xml file of the Hello_Client

project with container-configuration information 36
Listing 3-6 TransactionManagerConfiguration.xml file of the Hello_Client

project without container-configuration information 37

Chapter 4

Developing Entity Beans

45

Figure 4-1 The Select Mode pane of EOBeanAssistant 47
Figure 4-2 The Select Entities pane of EOBeanAssistant 48
Figure 4-3 The Configure Bean pane of EOBeanAssistant 49
Figure 4-4 The Select Generation Path pane of EOBeanAssistant 51
Listing 4-1 Enterprise bean files added by EOBeanAssistant to the Person

project directory 51
Listing 4-2 Person_Client project—GlobalTransactionConfiguration.xml

file 53
Listing 4-3 Person_Client project—CMPConfiguration.xml file 54
Listing 4-4 Person_Client project—TransactionManagerConfiguration.xml

file 54
Listing 4-5 Person_Client project—Application.java file 55
Listing 4-6 PersonBMP.java file 61
Listing 4-7 PersonDAO.java file 68

10



 Apple Computer, Inc. November 2002

F I U G R E S , L I S T I N G S , A N D T A B L E S

Chapter 5

Developing Bean Frameworks

71

Figure 5-1 Bean framework project in Windows 74
Figure 5-2 Viewing the value of the EJB_STUB_GENERATION build

setting 77
Listing 5-1 Deployment descriptor for a CMP entity bean 75

Chapter 6

Configuring Applications

79

Listing 6-1 Example dataSource element of the
TransactionManagerConfiguration.xml file 81

Listing 6-2 Example containers section of the OpenEJBConfiguration.xml
file 95

Listing 6-3 The initialContext method setting external-container
properties 97

Listing 6-4 Logging.conf file 99
Table 6-1 The configuration files of a bean-client application 80
Table 6-2 HIGH/LOW key generator parameters 89
Table 6-3 91
Table 6-4 Transaction attributes 94

Chapter 7

Configuration Reference

101

Listing 7-1 DTD for CMPConfiguration.xml 102
Listing 7-2 DTD for OpenEJBConfiguration.xml 117
Table 7-1 Element usage symbols 101
Table 7-2 Members of the bind-xml element 104
Table 7-3 Members of the cache-type element 105
Table 7-4 Members of the class element 106
Table 7-5 Members of the field element 107
Table 7-6 Values for the type attribute of the field element for CMP

beans 108
Table 7-7 Values for the collection attribute of the field element CMP

beans 109
Table 7-8 Members of the key-generator element 110
Table 7-9 Key-generator names supported in the persistence manager 111
Table 7-10 Members of the ldap element 111

F I U G R E S , L I S T I N G S , A N D T A B L E S

11



 Apple Computer, Inc. November 2002

Table 7-11 Members of the map-to element 112
Table 7-12 Members of the mapping element 112
Table 7-13 Members of the param element 113
Table 7-14 Members of the sql element 113
Table 7-15 Data members of the config element 114
Table 7-16 Members of the connector element 115
Table 7-17 Members of the dataSource element 115
Table 7-18 Members of the domain element 116
Table 7-19 Data members of the limits element 116
Table 7-20 Members of the resources element 117
Table 7-21 Members of the connection-manager element 120
Table 7-22 Members of the connector element 120
Table 7-23 Members of the connectors element 121
Table 7-24 Members of the container-system element 121
Table 7-25 Members of the containers element 122
Table 7-26 Members of the ejb-ref element 122
Table 7-27 Members of the ejb-ref-location element 123
Table 7-28 Members of the entity-bean element 123
Table 7-29 Members of the entity-container element 124
Table 7-30 Members of the env-entry element 125
Table 7-31 Members of the facilities element 125
Table 7-32 Members of the jndi-context element 126
Table 7-33 Members of the jndi-enc element 126
Table 7-34 Member of the intra-vm-server element 127
Table 7-35 Members of the managed-connection-factory element 127
Table 7-36 Members of the method element 128
Table 7-37 Members of the method-params element 129
Table 7-38 Members of the method-permission element 130
Table 7-39 Members of the method-transaction element 130
Table 7-40 Members of the openejb element 131
Table 7-41 Member of the properties element 131
Table 7-42 Members of the property element 131
Table 7-43 Members of the query element 132
Table 7-44 Member of the remote-jndi-contexts element 132
Table 7-45 Member of the resource element 133
Table 7-46 Members of the resource-ref element 133
Table 7-47 Members of the role-mapping element 135
Table 7-48 Members of the security-role element 135

12



 Apple Computer, Inc. November 2002

F I U G R E S , L I S T I N G S , A N D T A B L E S

Table 7-49 Members of the security-role-ref element 136
Table 7-50 Members of the security-service element 136
Table 7-51 Members of the services element 137
Table 7-52 Members of the stateful-bean element 137
Table 7-53 Members of the stateful-session-container element 138
Table 7-54 Members of the stateless-bean element 139
Table 7-55 Members of the stateless-session-container element 140
Table 7-56 Members of the transaction-service element 140

Appendix A

Document Revision History

143

Table A-1 143

13



 Apple Computer, Inc. November 2002

C H A P T E R 1

1 About This Document

Enterprise JavaBeans (EJB) is a specification that provides an infrastructure through
which solution providers can develop components that you can purchase and use
in your WebObjects applications with minimal effort. In addition, the components
can be configured to work with a variety of databases (as long as the database
supports JDBC). The key ingredient in these components is enterprise beans.
Enterprise beans are business objects that contain logic used to perform specific
tasks. They are similar to enterprise objects in WebObjects, but can be used in
application servers by multiple vendors.

Enterprise JavaBeans is part of Sun’s Java 2 Platform, Enterprise Edition (J2EE)
strategy. J2EE provides an abstraction from the implementation details of
databases, directory services, communication protocols, and so on. EJB aims at
providing you an abstraction layer between your application’s business logic and
the implementation-specific details of the data entities it uses. An enterprise-bean
developer doesn’t have to worry about which database is used when the bean is
deployed, freeing her to concentrate on the business problem. WebObjects
implements version 1.1 of the EJB specification.

Enterprise JavaBeans support in WebObjects lets you integrate third-party,
enterprise-bean–based solutions in your WebObjects applications. This means you
can purchase components that solve a particular problem, so that you can focus on
issues specific to your business. In addition, you can develop your own enterprise
beans using WebObjects tools. You must keep in mind, however, that Enterprise
Object technology does not complement, nor can be efficiently combined with
Enterprise JavaBeans. When you write enterprise beans, you use a persistence-
management system that is completely separate from Enterprise Objects. You
should not have enterprise beans that use the same database tables that enterprise-
object classes are mapped to.

14



 Apple Computer, Inc. November 2002

C H A P T E R 1

About This Document

You should read this document if you want to learn how to incorporate an EJB-
based solution in a WebObjects application or you want to develop your own
enterprise beans using WebObjects tools. However, it is not the purpose of this
document to teach you EJB development. If you want to develop enterprise beans,
you must already have a sound knowledge of the technology.

The document includes the following chapters:

�

Chapter 2, “Introduction to Enterprise JavaBeans” (page 17), provides an
overview of Enterprise JavaBeans technology and how it’s implemented in
WebObjects.

�

Chapter 3, “Developing Session Beans” (page 21), walks you through the
development of a simple session bean and its use in a client application.

�

Chapter 5, “Developing Bean Frameworks” (page 71), lists the steps you take to
create and maintain bean frameworks.

�

Chapter 6, “Configuring Applications” (page 79), explains how to configure the
transaction manager, the persistence manager, and the EJB container in your
client applications.

�

Chapter 7, “Configuration Reference” (page 101), provides explanations of the
XML elements used in the configuration files of client applications.

�

“Document Revision History” (page 143), lists changes made from previous
editions of the document.

To get the most out of this document you should be an experienced WebObjects
application developer. In particular, you need to know how to create applications
using Project Builder and be familiar with the layout of a Project Builder project. To
make use of enterprise beans in an application, you are required to edit
configuration files written in XML; therefore, you should be familiar with XML’s
rules and syntax.

To streamline your learning experience, you can use take advantage of the
companion resources that are included with this document in the

databases

,

models

,
and

projects

 directories in

/Developer/Documentation/WebObjects/

Enterprise_JavaBeans

 or in the TAR file that you can download from http://
developer.apple.com/techpubs/webobjects/webobjects.html.

If you need to learn the basics about developing WebObjects applications, you can
find pertinent documents and resources in http://developer.apple.com/
webobjects.

http://developer.apple.com/webobjects
http://developer.apple.com/webobjects
http://developer.apple.com/techpubs/webobjects/webobjects.html
http://developer.apple.com/techpubs/webobjects/webobjects.html

C H A P T E R 1

About This Document

15



 Apple Computer, Inc. November 2002

If you need to learn about EJB development, these books provide you introductory
information as well as development guidelines:

�

Enterprise JavaBeans

 (O’Reilly)

�

Professional EJB

 (Wrox Press)

�

Applying Enterprise JavaBeans: Component-Based Development for the J2EE Platform

(Addison-Wesley)

WebObjects uses open-source implementations of the EJB container, the object
request broker, the transaction manager, and the persistence manager. For details
about those implementations in WebObjects, consult the following documents:

�

OpenEJB User Guide

 provides details about the EJB container included with
WebObjects. However, most of the information from it needed to develop or
deploy enterprise beans is present in this document. You can find the document
in

/System/Library/Frameworks/JavaOpenEJB.framework/Resources/

English.lproj/Documentation/OpenEJB_User_Guide.pdf

. You can find more
information at http://OpenEJB.sourceforge.net.

�

OpenORB Programmers Guide

 and

RMI over IIOP for OpenORB

 deal with the
Object Request Broker (ORB) implementation used in WebObjects. They are
located in

/System/Library/Frameworks/JavaOpenORB.framework/Resources/

English.lproj/Documentation

. For more information, visit http://
OpenORB.sourceforge.net.

�

API documentation on the Tyrex transaction manager is located in

/System/

Library/Frameworks/JavaOpenTM.framework/Resources/English.lproj/

Documentation

. For more information on Tyrex, visit http://
Tyrex.sourceforge.net.

http://OpenEJB.sourceforge.net
http://OpenORB.sourceforge.net
http://OpenORB.sourceforge.net
http://Tyrex.sourceforge.net
http://Tyrex.sourceforge.net

16



 Apple Computer, Inc. November 2002

C H A P T E R 1

About This Document

Enterprise JavaBeans

17



 Apple Computer, Inc. November 2002

C H A P T E R 2

2 Introduction to Enterprise
JavaBeans

WebObjects provides all the tools you need to develop and deploy enterprise
applications. However, WebObjects is not the only technology available. Other
companies provide tools that accomplish the same task, albeit using different
methods and requiring specialized deployment environments. Therefore, it’s
difficult for a WebObjects application to talk to an application developed and
deployed under a different environment. J2EE and EJB bridge the schism between
environments from different vendors.

J2EE standardizes the way Web applications communicate with the resources they
need to operate. Akin to JDBC, the goal of J2EE is to provide an infrastructure that
applications from different developers can utilize to get their work done.

Enterprise JavaBeans

Enterprise JavaBeans is an important part of J2EE. It provides an environment in
which components from several manufacturers can be assembled into a working
application. The application assembler, with deep knowledge of the requirements
of the business, can choose the component that best matches the task at hand. For
instance, she could use transaction-processing beans from one company; customer,
order, and product beans from another company; and shipping beans from a third
company. She would then end up with an application capable of accepting orders,
charging the customer, and process shipments without having to write code.

Enterprise beans are specialized components that can encapsulate session
information, workflow, and persistent data. A bean client is an application or an
enterprise bean that makes use of another bean. An enterprise bean has three parts:

18

Enterprise JavaBeans



 Apple Computer, Inc. November 2002

C H A P T E R 2

Introduction to Enterprise JavaBeans

�

The home interface

 is used by the client to create and discard beans.

�

The remote interface

 is used by the client to execute the bean’s business
methods.

�

The implementation or bean class

 is where the bean’s business and callback
methods are implemented. The client never invokes these methods directly;
they are invoked by the bean container.

The container is a conceptual entity that mediates between enterprise-bean
instances and client applications. Clients never access bean instances directly.
Instead, they interact with proxies provided by the container This allows the bean
container to perform its duties in the most efficient way. The client doesn’t have to
know how the container implements its functions; all it needs to know is how to talk
to the container.

In addition, beans have a deployment descriptor. This is an XML file that gives the
container information about each bean and data-source connection details, among
many other items.

There are two major types of enterprise beans: session beans and entity beans.

�

Session beans

 come in two flavors: stateful and stateless. Stateful session beans
maintain state between method invokations; stateless session beans do not.

Stateless session beans are useful for grouping related methods in one place.
Stateful session beans can be used to encapsulate workflow. In most cases it’s
more efficient for client applications to use session beans (stateless or stateful) to
accomplish their tasks than to use entity beans directly because network traffic
is reduced.

�

Entity beans

 are similar to enterprise objects (the objects that represent an
instance of a data entity in Enterprise Objects). They encapsulate access to data
entities.

An enterprise-bean developer can focus on the high-level business logic needed to
implement the services that a bean provides instead of on low-level system or data-
store calls (those functions can be left to the container).

One of the most important functions of the container is transaction management
and access control. WebObjects includes the OpenEJB open-source container
system. OpenEJB consists of four main components:

�

EJB container:

 The EJB container implements the lifecycle of enterprise beans
and the server contracts in the EJB specification.

C H A P T E R 2

Introduction to Enterprise JavaBeans

Enterprise JavaBeans in WebObjects

19



 Apple Computer, Inc. November 2002

�

Object Request Broker (ORB):

 The OpenORB object request broker implements
RMI-over-IIOP, naming service, and CORBA ORB.

�

Transaction manager:

 The Tyrex transaction manager implements a transaction
manager compliant with the Java Transaction API (JTA) and Object Transaction
Service (OTS) specifications.

�

Persistence manager:

 The Castor JDO persistence manager implements bean
persistence for entity beans. It’s used in the implementation of CMP (container-
managed persistence) beans.

Enterprise JavaBeans in WebObjects

You can use WebObjects development tools to develop enterprise beans from
scratch or to integrate third-party EJB-based solutions in a WebObjects application.
Bean development in WebObjects is divided in two phases: development and
deployment.

You develop enterprise beans by writing the

.java and deployment descriptor files.
Project Builder provides you with templates for all these files. You can also obtain
the source code or JAR files for enterprise beans from a third party. As an
alternative, you can develop data models from which entity-bean source files can be
generated. For more information, see “Developing an Entity Bean From a Data
Model” (page 45).

You deploy one or more beans by generating a bean framework, which contains the
beans’ JAR and deployment descriptor files, and placing it somewhere in a
development computer’s file system; for example, in /Library/Frameworks. After
you deploy a bean framework, it’s available to be integrated in client applications
for their use.

Client applications can be developed in two ways: using an internal bean container,
or using an external container:

� Internal container: This approach is the most scalable because each application
instance has its own container and naming-service object.

20 Enterprise JavaBeans in WebObjects
  Apple Computer, Inc. November 2002

C H A P T E R 2

Introduction to Enterprise JavaBeans

If the user load of your site becomes too large for one instance to handle, all you
have to do is add more instances of it. Each container answers only to one
application, so there is no application-to-container bottleneck.

� External container: This approach is beneficial if you already have a robust bean
container, running on a fast computer, that you want to leverage. In this case, no
configuration files should be present in the bean-client application project. For
more on the configuration files, see “Configuring Applications” (page 79).

Developing a Session Bean in Mac OS X 21
  Apple Computer, Inc. November 2002

C H A P T E R 3

3 Developing Session Beans

Before developing WebObjects applications that use enterprise beans, you have to
create enterprise-bean frameworks. These frameworks contain the JAR files (which
include the deployment descriptor files) needed to deploy enterprise beans.

You can develop a bean framework by writing the beans yourself or by using third-
party beans (either from Java source and deployment descriptor files or JAR files).
Project Builder helps you develop beans by providing you with bean templates that
get you started.

In most cases, you save both time and money when you purchase enterprise beans
from EJB vendors instead of developing your own. This is because you obtain a
solution that has been tested by the solution vendor and other developers. Also
remember that you cannot take advantage of Enterprise Object technology in your
enterprise beans; for example, you may have to implement primary-key classes,
finder methods, primary-key–value generation, and so on in your entity beans. In
addition, you have to choose between implementing a bean as an entity bean or a
session bean. It’s a bean provider’s job to design an effective and efficient bean
solution for you. You can then compare similar solutions from various vendors and
purchase the one that most closely addresses your situation.

The following sections show how to develop a stateless session bean for use in a
WebObjects application both on Mac OS X and Windows.

Developing a Session Bean in Mac OS X

This section shows you how you develop a stateless session bean for use in a
WebObjects application in Mac OS X.

22 Developing a Session Bean in Mac OS X
  Apple Computer, Inc. November 2002

C H A P T E R 3

Developing Session Beans

Creating the Bean Framework

1. Launch Project Builder.

2. Choose File > New Project.

3. In the New Project pane of the Project Builder Assistant, select Enterprise
JavaBean Framework from the list of project types, and click Next.

4. Name the project Hello.

5. In the Create New Enterprise Java Bean pane of the Assistant, select “Create
source files for a new Enterprise Java Bean.”

C H A P T E R 3

Developing Session Beans

Developing a Session Bean in Mac OS X 23
  Apple Computer, Inc. November 2002

6. In the Choose Bean Type pane, make sure Stateless Bean is selected under
Enterprise JavaBean Types.

24 Developing a Session Bean in Mac OS X
  Apple Computer, Inc. November 2002

C H A P T E R 3

Developing Session Beans

7. In the Enterprise JavaBean Class Name pane:

a. Enter Hello in the Class Name text field.

b. Enter my.ejb in the Package Name text field.

C H A P T E R 3

Developing Session Beans

Developing a Session Bean in Mac OS X 25
  Apple Computer, Inc. November 2002

Analyzing the Hello Bean’s Files
The Hello project has templates for the home and remote interfaces, as well as for
the implementation class of the Hello enterprise bean in the Classes group of the
Groups & Files list. In addition, the Resources group contains the bean’s
deployment descriptor file.

Listing 3-1 shows the template for the home interface of the Hello enterprise bean
(HelloHome.java):

Listing 3-1 HelloHome.java file

package my.ejb;

import javax.ejb.*;

import java.rmi.RemoteException;

public interface HelloHome extends EJBHome {

26 Developing a Session Bean in Mac OS X
  Apple Computer, Inc. November 2002

C H A P T E R 3

Developing Session Beans

/** Creation methods **/

/* Stateful session beans may have multiple create methods taking

* different parameters. They must all be reflected in identically

* named methods in the home interface without the 'ejb' prefix

* and initial cap.

*

* Stateless session bean create methods never have parameters.

*/

 public Hello create() throws RemoteException, CreateException;

}

Listing 3-2 shows the template for the bean’s remote interface (Hello.java):

Listing 3-2 Hello.java file

package my.ejb;

import javax.ejb.*;

import java.rmi.RemoteException;

import java.rmi.Remote;

public interface Hello extends EJBObject {

//

// Business Logic Interfaces

//

// Example:

// public String hello() throws java.rmi.RemoteException;

}

Listing 3-3 shows the template for the bean’s implementation class
(HelloBean.java):

C H A P T E R 3

Developing Session Beans

Developing a Session Bean in Mac OS X 27
  Apple Computer, Inc. November 2002

Listing 3-3 HelloBean.java file

package my.ejb;

import javax.ejb.*;

public class HelloBean implements SessionBean {

//

// Creation methods

//

public HelloBean() {

}

public void ejbCreate() throws CreateException {

/* Stateless session bean create methods never have parameters */

}

//

// SessionBean interface implementation

//

private SessionContext _ctx;

public void setSessionContext(SessionContext ctx) {

this._ctx = ctx;

}

public void ejbPassivate() {

/* does not apply to stateless session beans */

}

public void ejbActivate() {

/* does not apply to stateless session beans */

}

public void ejbRemove() {

}

//

// Business Logic Implementations

28 Developing a Session Bean in Mac OS X
  Apple Computer, Inc. November 2002

C H A P T E R 3

Developing Session Beans

//

// Example:

// public String hello() { return "hello"; }

}

Listing 3-4 shows the bean’s deployment descriptor file(ejb-jar.xml):

Listing 3-4 ejb-jar.xml file

<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE ejb-jar PUBLIC '-//Sun Microsystems, Inc.//DTD Enterprise JavaBeans

1.1//EN' 'http://java.sun.com/j2ee/dtds/ejb-jar_1_1.dtd'>

<ejb-jar>

 <description>deployment descriptor for Hello</description>

 <display-name>Hello</display-name>

 <enterprise-beans>

 <session>

 <description>deployment descriptor for HelloBean</description>

 <display-name>HelloBean</display-name>

 <ejb-name>HelloBean</ejb-name>

 <home>my.ejb.HelloHome</home>

 <remote>my.ejb.Hello</remote>

 <ejb-class>my.ejb.HelloBean</ejb-class>

 <session-type>Stateless</session-type>

 <transaction-type>Container</transaction-type>

 </session>

 </enterprise-beans>

</ejb-jar>

In addition to providing you with most of the code needed to deploy a bean, Project
Builder also partitions the source code appropriately between two targets: EJB
Deployment and EJB Client Interfaces.

Figure 3-1 shows how all the bean’s source files are assigned to the EJB Deployment
target.

C H A P T E R 3

Developing Session Beans

Developing a Session Bean in Mac OS X 29
  Apple Computer, Inc. November 2002

Figure 3-1 Hello project—the EJB Deployment target’s members

When you view the EJB Client Interfaces target, however, you see that the
implementation class and the deployment descriptor files are not assigned to it, as
shown in Figure 3-2.

Figure 3-2 Hello project—the EJB

30 Developing a Session Bean in Mac OS X
  Apple Computer, Inc. November 2002

C H A P T E R 3

Developing Session Beans

Adding Business Logic to the Bean
Now you’re ready to add the business logic required for the Hello bean to provide
a message to its clients.

Edit Hello.java by adding the following method declaration:

public String message() throws RemoteException;

Edit HelloBean.java by adding the implementation of the message method, which is
listed below.

public String message() {

return "Hello, World.";

}

Building the Bean Framework
To build the Hello bean framework, all you have to do is click Build in the toolbar
or choose Build > Build. (Make sure that the Hello target is selected in the target
pop-up menu before you build.)

After the framework is built, you can find it in the project’s build directory:

Hello/

build/

Hello.framework

Creating the Client Application
Now that the Hello bean framework is built, you’re ready to use it in an application.
In this case, the client application is an Web application that invokes the bean’s
message method, and displays its return value in a WOString element.

1. Create a WebObjects application project.

2. Name the project Hello_Client.

3. In the Enable J2EE Integration pane of the Project Builder Assistant, select
“Deploy as an Enterprise JavaBean container.”

C H A P T E R 3

Developing Session Beans

Developing a Session Bean in Mac OS X 31
  Apple Computer, Inc. November 2002

When you deploy the client application as an EJB container, each application
instance has its own EJB container. For more information on internal and
external containers, see “Enterprise JavaBeans in WebObjects” (page 19).

4. This example doesn’t require the use of any data-source adaptors, so make sure
no adaptors are selected in the Choose EOAdaptors pane.

You need to select a data-source adaptor only when you plan to use enterprise
objects in your application. Entity beans that use bean-managed persistence
(BMP) are responsible for interfacing with the necessary data stores. For entity
beans that use container-managed persistence (CMP), the bean container has
this responsibility. The Hello_Client application does not use enterprise objects.

5. Add the Hello framework to the project.

a. In the Choose Frameworks pane of the Assistant, click Add.

b. Select Hello.framework in the build folder of the Hello project folder, and
click Choose.

Figure 3-3 highlights the Hello.framework in the Hello_Client project.

32 Developing a Session Bean in Mac OS X
  Apple Computer, Inc. November 2002

C H A P T E R 3

Developing Session Beans

Figure 3-3 Hello_Client project—Hello.framework in Frameworks group

Adding Business Logic to the Client Application
You have generated an application that, when run, instantiates its own EJB
container. This container behaves like a standard EJB container. To access bean
instances, you use standard EJB methods.

Modify Session.java

Now, edit Session.java so that each new session creates a Hello bean proxy that
your components can access.

First, add these import statements:

import my.ejb.Hello;

import my.ejb.HelloHome;

import java.rmi.RemoteException;

C H A P T E R 3

Developing Session Beans

Developing a Session Bean in Mac OS X 33
  Apple Computer, Inc. November 2002

import java.util.Properties;

import javax.ejb.CreateException;

import javax.naming.Context;

import javax.naming.InitialContext;

import javax.naming.NamingException;

import javax.rmi.PortableRemoteObject;

Now, add two instance variables: one to hold a Hello bean instance and another to
hold a Hello home-interface object.

// Holds a Hello bean instance.

protected Hello hello;

// Holds the Hello bean’s home interface.

private HelloHome _helloHome = null;

Modify the Session constructor so that it looks like this

public Session() {

super();

// Instantiate a Hello bean object.

try {

hello = helloHome().create();

}

catch (RemoteException re) {

re.printStackTrace();

}

catch (CreateException ce) {

ce.printStackTrace();

}

}

Finally, add the following method:

/**

 * Obtains Hello bean’s home interface.

 * @return Hello bean’s home interface.

 */

public HelloHome helloHome() {

if (_helloHome == null) {

try {

34 Developing a Session Bean in Mac OS X
  Apple Computer, Inc. November 2002

C H A P T E R 3

Developing Session Beans

Context jndiContext = new InitialContext();

_helloHome =

(HelloHome)PortableRemoteObject.narrow(jndiContext.lookup("HelloBean"),

HelloHome.class);

}

catch (NamingException ne) {

ne.printStackTrace();

}

}

return _helloHome;

}

Modify Main.wo

Open Main.wo in WebObjects Builder by double-clicking Main.wo, which is located
under the Main subgroup of the Web Components group in the Groups & Files list.

Add a String key called greeting to Main.wo through the Edit Source pop-up menu.

Add a WOString element to the component, and bind it to the greeting key.

C H A P T E R 3

Developing Session Beans

Developing a Session Bean in Mac OS X 35
  Apple Computer, Inc. November 2002

Modify Main.java

When a Main page is about to be displayed, the Main object needs to invoke the
message method of its Hello bean proxy to obtain the bean’s greeting, and store the
value returned in its greeting instance variable. When the WOString element is
rendered on the page, its value binding provides the text to be displayed; in this
case, the value comes from greeting in the Main object.

Add the following import statements to Main.java:

import my.ejb.Hello;

import java.rmi.RemoteException;

Edit the Main constructor so that it looks like this

public Main(WOContext context) {

 super(context);

 Session session = (Session)session();

 try {

36 Developing a Session Bean in Mac OS X
  Apple Computer, Inc. November 2002

C H A P T E R 3

Developing Session Beans

greeting = session.hello.message();

 }

catch (RemoteException re) {

re.printStackTrace();

 }

}

Configuring the Container
This simple session bean project doesn’t make use of bean persistence. Therefore, it
requires no container configuration. The text you need to delete from the
TransactionManagerConfiguration.xml file starts at the line numbered 1 and ends at
the line numbered 2 in (everything between the <resources> and </resources> tags
and the tags themselves). See “Transaction Manager Configuration” (page 85) for
more information.

Listing 3-5 TransactionManagerConfiguration.xml file of the Hello_Client
project with container-configuration information

<domain>

 <name>default</name>

 <resources> //1

 <dataSource>

 <name>DefaultDatabase</name>

 <class>tyrex.resource.jdbc.xa.EnabledDataSource</class>

 <!-- Path to the database-driver JAR File if not in the extensions directory-->

 <jar>file:/FAKEPATHNAME</jar>

 <config>

 <driverName>jdbc:oracle:thin:@HOSTNAME:PORTNAME:DATABASENAME</driverName>

 <driverClassName>oracle.jdbc.OracleDriver</driverClassName>

 <user>ejb</user>

 <password>ejb</password>

 <!-- Transaction timeout in seconds. -->

 <transactionTimeout>60</transactionTimeout>

 <!-- Specifies the JDBC transaction isolation attribute. -->

 <isolationLevel>Serializable</isolationLevel>

 </config>

C H A P T E R 3

Developing Session Beans

Developing a Session Bean in Mac OS X 37
  Apple Computer, Inc. November 2002

 <limits>

 <maximum>100</maximum>

 <minimum>10</minimum>

 <initial>10</initial>

 <maxRetain>300</maxRetain>

 <timeout>50</timeout>

 </limits>

 </dataSource>

 </resources> //2

</domain>

After removing the irrelevant information, the
TransactionManagerConfiguration.xml file should look like this:

Listing 3-6 TransactionManagerConfiguration.xml file of the Hello_Client
project without container-configuration information

<domain>

 <name>default</name>

</domain>

Running the Hello_Client Application
After you build and run the application, you should see a Web page similar to the
one in Figure 3-4 in your Web browser.

38 Developing a Session Bean in Windows
  Apple Computer, Inc. November 2002

C H A P T E R 3

Developing Session Beans

Figure 3-4 Output of the Hello_Client application

Developing a Session Bean in Windows

This section shows how to develop a stateless session bean for use in a WebObjects
application in Windows.

Creating the Bean Framework

1. Launch Project Builder.

2. Choose Project > New.

3. Choose Java WebObjects EJB Framework from the Project Type pop-up menu in
the New Project dialog, and click Browse.

4. Select a path for your project, name it Hello, and click Save.

5. In the Specify Enterprise JavaBeans pane of the EJB Framework Wizard, select
“Create source files for a new Enterprise Java Bean” and click Next.

6. Make sure that Stateless Session Bean is selected in the Chose Enterprise
JavaBeans Type pane of the wizard and click Next.

C H A P T E R 3

Developing Session Beans

Developing a Session Bean in Windows 39
  Apple Computer, Inc. November 2002

7. In the Create New Enterprise JavaBeans class pane:

a. Enter Hello in the Class Name text field.

b. Enter my.ejb in the Package Name text field.

c. Click Finish.

Adding Business Logic to the Bean
Now you’re ready to add the business logic required for the Hello bean to provide
a message to its clients.

Edit Hello.java by adding the following code (the file is located in the Classes
bucket):

public String message() throws RemoteException;

Edit HelloBean.java by adding the implementation of the message method, which is
listed below (the file is located in the Classes bucket of the EJBServer subproject).

public String message() {

return "Hello, World.";

}

Building the Framework
To build the Hello framework, click the Build button or choose Tools > Project Build
> Build.

After the framework is built, you’ll find it in the project’s directory:

Hello/

Hello.framework

Creating the Client Application Project
Now that the Hello framework is built, you’re ready to use it in an application. In
this case, the client application is a Web application that invokes the bean’s message
method, and displays its return value in a WOString element.

40 Developing a Session Bean in Windows
  Apple Computer, Inc. November 2002

C H A P T E R 3

Developing Session Beans

1. Create a Java WebObjects Application project and name it Hello_Client.

2. Choose None in the “Choose type of assistance in your Java project” pane of the
WebObjects Application Wizard.

3. Choose “Deploy as an EJB Container” in the Enable J2EE Integration pane.

4. In the Choose EOAdaptors pane, click Select None, and then click Finish.

Adding the Hello Bean Framework to the
Hello_Client Project
You need to add the Hello bean framework to the Hello_Client project in order to
use the services provided the Hello enterprise bean—mainly providing a greeting.
To accomplish that, follow these steps:

1. Select the Frameworks bucket and choose Project > Add Files.

2. Navigate to the Hello project directory, select Hello.framework, and click Open.

3. Click Add in the search order dialog.

Creating the Container Configuration Files
To create the configuration files that the client application needs to interact with its
environment, you need to run an application named OpenEJBTool, whose launch
script is located in /Apple/Library/WebObjects/JavaApplications/OpenEIBTool.woa.

Using the Bourne shell, execute the following commands:

cd /Apple/Library/WebObjects/JavaApplications/OpenEJBTool.woa

./OpenEJBTool.cmd -o c:/<Hello_Client_path>

 c:/<Hello_path>Hello.framework

When the tool is finished, you need to add the configuration files it generated
(OpenEJBConfiguration.xml and TransactionManagerConfiguration.xml) to the
Resources bucket of the Hello_Client project.

Note: You have to run OpenEJBTool manually every time you add bean
frameworks to your project or when the deployment descriptor file in any of the
bean frameworks your project uses changes.

C H A P T E R 3

Developing Session Beans

Developing a Session Bean in Windows 41
  Apple Computer, Inc. November 2002

Adding Business Logic to the Client Application
You have generated a WebObjects application that, when run, instantiates its own
EJB container. This container behaves like a standard EJB container. To access bean
instances, you use standard EJB methods.

Modify Session.java

Here you edit Session.java so that each new session creates a Hello proxy and
provides access to it to components.

First, add these import statements:

import my.ejb.Hello;

import my.ejb.HelloHome;

import java.rmi.RemoteException;

import java.util.Properties;

import javax.ejb.CreateException;

import javax.naming.Context;

import javax.naming.InitialContext;

import javax.naming.NamingException;

import javax.rmi.PortableRemoteObject;

Now, add two instance variables: one to hold a Hello bean object and another to
hold a Hello home-interface object.

// Holds a Hello bean instance.

protected Hello hello;

// Holds a Hello bean home-interface object.

private HelloHome _helloHome;

Modify the Session constructor so that it looks like this:

public Session() {

 super();

 // Instantiate a HelloBean object.

 try {

hello = helloHome().create();

 } catch (RemoteException re) {

42 Developing a Session Bean in Windows
  Apple Computer, Inc. November 2002

C H A P T E R 3

Developing Session Beans

re.printStackTrace();

 } catch (CreateException ce) {

ce.printStackTrace();

 }

}

Finally, add the following method:

/**

 * Obtains HelloBean’s home interface.

 * @return HelloBean’s home interface.

 */

public HelloHome helloHome() {

if (_helloHome == null) {

try {

Context jndiContext = new InitialContext();

_helloHome =

(HelloHome)PortableRemoteObject.narrow(jndiContext.lookup("HelloBean"),

HelloHome.class);

} catch (NamingException ne) {

ne.printStackTrace();

}

}

return _helloHome;

}

Modify Main.wo

Open Main.wo in WebObjects Builder by double-clicking Main.wo, which is located
under the Web Components bucket.

Add a String key called greeting to Main.wo through the Edit Source pop-up menu.

Add a WOString element to the component, and bind it to the greeting key.

C H A P T E R 3

Developing Session Beans

Developing a Session Bean in Windows 43
  Apple Computer, Inc. November 2002

Modify Main.java

When a Main page is about to be displayed, the Main object needs to invoke the
message method of its Hello bean proxy to obtain the bean’s greeting, and store the
value returned in its greeting instance variable. When the WOString element is
rendered on the page, its value binding provides the text to be displayed; in this
case, the value comes from greeting in the Main object.

Add the following import statements to Main.java:

import com.my.ejb.Hello;

import java.rmi.RemoteException;

Edit the Main constructor so that it looks like this:

public Main(WOContext context) {

 super(context);

 Session session = (Session)session();

 try {

greeting = session.hello.message();

 } catch (RemoteException re) {

re.printStackTrace();

 }

}

Configuring the Container
This simple session bean project doesn’t make use of bean persistence. Therefore, it
requires no database configuration. You need to edit the
TransactionManagerConfiguration.xml file of the project to remove extraneous data-
source configuration information, which is everything between the <resources> and
</resources> tags, and the tags themselves.

After removing the irrelevant information, the
TransactionManagerConfiguration.xml file should look like this

<domain>

 <name>default</name>

</domain>

44 Developing a Session Bean in Windows
  Apple Computer, Inc. November 2002

C H A P T E R 3

Developing Session Beans

Running the Hello_Client Application
After you build and run the application, you should see a Web browser window
with the message “Hello, World.”

Developing an Entity Bean From a Data Model 45
  Apple Computer, Inc. November 2002

C H A P T E R 4

4 Developing Entity Beans

This chapter guides through the development an entity-bean framework based on
a data model and its use in an application. It also shows you the entity-bean source
files that the Project Builder Assistant can generate for you, which include source
files for CMP (container-managed persistence) entity beans, BMP (bean-managed
persistence) entity beans, and DAO (Data Access Object) source files used to
customize data-store access.

The chapter contains the following sections:

� “Developing an Entity Bean From a Data Model” (page 45).

� “Using an Entity-Bean Framework” (page 52).

� “Advanced Entity-Bean Development” (page 60).

Developing an Entity Bean From a Data Model

This section shows how to use EOBeanAssistant to create an enterprise-bean
framework based on entities defined in a model file created using EOModeler.

As part of this document’s companion files is a simple model file named
Person.eomodeld, located in the models directory.

46 Developing an Entity Bean From a Data Model
  Apple Computer, Inc. November 2002

C H A P T E R 4

Developing Entity Beans

Creating an Empty Bean Framework
Before generating the source files for an entity bean, there needs to be a project to
which you add the files to. You can create an empty bean-framework project or you
may add the generated files to an existing bean-framework project. This section
walks you through the creating an empty bean framework.

1. In Project Builder, choose File > New Project.

2. Choose Enterprise JavaBean Framework as the project type.

3. Name the project Person.

4. Make sure “Empty Enterprise JavaBean framework” is selected in the Create
New Enterprise JavaBean pane of the Project Builder Assistant.

Generating Enterprise-Bean Source Files From a
Model File Using EOBeanAssistant
EOBeanAssistant is an application that creates all the Java source files and the ejb-
jar.xml file you need to implement an entity bean. It’s located in /Developer/
Applications. Figure 4-1 shows the Select Model pane of EOBeanAssistant. Enter
the path to your model in the text field or click Select Model and navigate to it.

C H A P T E R 4

Developing Entity Beans

Developing an Entity Bean From a Data Model 47
  Apple Computer, Inc. November 2002

Figure 4-1 The Select Mode pane of EOBeanAssistant

In the Select Entities pane (Figure 4-2), select the entity or entities you want to
generate enterprise-bean source files for and click the right-pointing arrow so that
they move from the box on the left to the one on the right.

48 Developing an Entity Bean From a Data Model
  Apple Computer, Inc. November 2002

C H A P T E R 4

Developing Entity Beans

Figure 4-2 The Select Entities pane of EOBeanAssistant

The Configure Bean pane (Figure 4-3) provides several options. Make sure Generate
ejbFindAll Method, Generate BMP Class, and Generate CMP Class are selected.

C H A P T E R 4

Developing Entity Beans

Developing an Entity Bean From a Data Model 49
  Apple Computer, Inc. November 2002

Figure 4-3 The Configure Bean pane of EOBeanAssistant

Package
The package name to use in the Java source files and the deployment
descriptor.

Home Interface
The name of the home-interface class of the entity bean.

Remote Interface
The name of the remote-interface class of the entity bean.

50 Developing an Entity Bean From a Data Model
  Apple Computer, Inc. November 2002

C H A P T E R 4

Developing Entity Beans

Primary Key Class Name
The data type you want to use for the primary key of the entity bean.

Generate ejbFindAll Method
When selected, EOBeanAssistant generates findAll and ejbFindAll
methods.

Generate BMP Class
When selected, EOBeanAssistant generates a BMP-source file for the
entity bean.

BMP Class Name
The name of the BMP-source file.

JNDI Data-Source Name
The name of the JNDI (Java Naming and Directory Service) data source
that identifies the data store.

BMP Class Extends CMP Class
When selected, the BMP-class file generated by EOBeanAssistant
extends the CMP class.

Generate DAO Class
When selected, EOBeanAssistant generates a DAO class files that
implement database-specific logic.

DAO Interface Name
The name of the DAO interface.

JDBC Class Name
The name of the JDBC class used to communicate with the data store.

Generate CMP Class
When selected, EOBeanAssistant generates a CMP-class file for the
entity bean.

CMP Class Name
The name of the CMP-class file.

The Common Bean Configuration pane allows you to enter header information that
you want all the source files generated to contain.

The Select Generation Path pane (Figure 4-4) allows you to enter or choose the path
of the bean-framework project folder you want to add the generated source files to.
You can choose to overwrite the existing ejb-jar.xml file or to add or replace only
the entries corresponding to the added entity beans.

C H A P T E R 4

Developing Entity Beans

Developing an Entity Bean From a Data Model 51
  Apple Computer, Inc. November 2002

Figure 4-4 The Select Generation Path pane of EOBeanAssistant

Listing 4-1 shows the files that EOBeanAssistant adds to the Person project
directory.

Listing 4-1 Enterprise bean files added by EOBeanAssistant to the Person project
directory

Person/

52 Using an Entity-Bean Framework
  Apple Computer, Inc. November 2002

C H A P T E R 4

Developing Entity Beans

EOBeanBuilder.xml

Person.java

PersonBMP.java

PersonCMP.java

PersonHome.java

META-INF/

ejb-jar.xml

Using an Entity-Bean Framework

In this section you create an application that uses the entity-bean framework
developed in “Developing an Entity Bean From a Data Model” (page 45).

Before you can successfully run the application, you must create the Person
database. Use OpenBaseManager to import the database in /Developer/
Documentation/WebObjects/Enterprise_JavaBeans/databases. Alternatively, you
can do the following:

1. Create a database named Person using OpenBaseManager.

a. Launch OpenBaseManager, which is located in /Applications/OpenBase/
OpenBaseManager.

b. Choose Database > New.

c. In the Configure Database dialog, enter Person in the Database Name text
input field, select Start Database at Boot, choose ASCII from the Internal
Encoding pop-up menu, and click Set.

d. In the OpenBaseManager main window, select the Person database under
localhost and click Start Database.

2. Add the PERSON table to the Person database.

a. Open /Developer/Documentation/WebObjects/Enterprise_JavaBeans/models/
Person.eomodeld in EOModeler.

b. Choose Property > Generate SQL.

c. Make sure only the Create Tables option is selected in the SQL Generation
dialog and click Execute SQL.

C H A P T E R 4

Developing Entity Beans

Using an Entity-Bean Framework 53
  Apple Computer, Inc. November 2002

Developing the Application Project
Follow these steps to develop the client-application project:

1. Create a project named Person_Client.

2. In the J2EE Integration pane of the Project Builder Assistant, select “Deploy as
Enterprise JavaBean container.”

3. In the Chose EOAdaptors pane of the Assistant, deselect the JDBC adaptor.

4. In the Choose Frameworks pane, add Person.framework, which is located in the
build directory of the Person project directory.

Defining Data Sources
In Project Builder, select GlobalTransactionConfiguration.xml under the Resources
group. You should see the file shown in Listing 4-2.

Listing 4-2 Person_Client project—GlobalTransactionConfiguration.xml file

<!DOCTYPE databases PUBLIC "-//EXOLAB/Castor JDO Configuration DTD Version

1.0//EN"

 "http://www.apple.com/webobjects/5.2/DTDs/jdo-

conf.dtd">

<database name="Global_TX_Database" engine="oracle"> //1

 <jndi name="java:comp/env/jdbc/DefaultCMPDatasource" />

 <mapping href="Contents/Resources/CMPConfiguration.xml" />

</database>

In the line numbered 1, change the value of the engine attribute to "generic".

For more information on data-source definition, see “Defining Data Sources”
(page 92).

Mapping Enterprise Beans to Data-Store Tables
Select CMPConfiguration.xml under the Resources group of the Groups & Files list.
You should see the file shown in Listing 4-3.

54 Using an Entity-Bean Framework
  Apple Computer, Inc. November 2002

C H A P T E R 4

Developing Entity Beans

Listing 4-3 Person_Client project—CMPConfiguration.xml file

<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE mapping PUBLIC "-//EXOLAB/Castor Mapping DTD Version 1.0//EN"

 "http://www.apple.com/webobjects/5.2/DTDs/mapping.dtd">

<mapping>

 <class identity="person_ID" name="my.ejb.PersonCMP">

 <map-to table="*** MARKER table name ***"/> //1

 <field direct="true" name="personName" type="java.lang.String">

 <sql name="personName" type="varchar"/> //2

 </field>

 <field direct="true" name="person_ID" type="java.lang.Integer">

 <sql name="person_ID" type="integer"/> //3

 </field>

 </class>

</mapping>

Change the numbered lines according to these instructions:

1. Set the table attribute of the map-to element to "PERSON".

2. Set the name attribute of the sql element to "PERSON_NAME".

3. Set the name attribute of the sql element to "PERSON_ID".

For more information on mapping enterprise beans to tables, see “Mapping
Enterprise Beans to Data-Store Tables” (page 87).

Configuring the Transaction Manager
Select TransactionManagerConfiguration.xml and edit it so that it looks like Listing
4-4.

Listing 4-4 Person_Client project—TransactionManagerConfiguration.xml file

<domain>

 <name>default</name>

 <resources>

 <dataSource>

 <name>DefaultDatabase</name>

C H A P T E R 4

Developing Entity Beans

Using an Entity-Bean Framework 55
  Apple Computer, Inc. November 2002

 <class>tyrex.resource.jdbc.xa.EnabledDataSource</class>

 <jar>/Library/Java/Extensions/OpenBaseJDBC.jar</jar>

 <config>

 <driverName>jdbc:openbase://localhost/Person</driverName>

 <driverClassName>com.openbase.jdbc.ObDriver</driverClassName>

 <transactionTimeout>60</transactionTimeout>

 <isolationLevel>Serializable</isolationLevel>

 </config>

 <limits>

 <maximum>100</maximum>

 <minimum>10</minimum>

 <initial>10</initial>

 <maxRetain>300</maxRetain>

 <timeout>50</timeout>

 </limits>

 </dataSource>

 </resources>

</domain>

For more information on transaction manager configuration, see “Transaction
Manager Configuration” (page 85).

Creating, Retrieving, and Removing Person Beans
Now, add the application’s business logic. Select Application.java under Classes in
the Groups & Files list and modify it to match Listing 4-5.

Listing 4-5 Person_Client project—Application.java file

import my.ejb.Person;

import my.ejb.PersonHome;

import java.rmi.RemoteException;

import javax.ejb.CreateException;

import javax.ejb.FinderException;

import javax.ejb.RemoveException;

import javax.naming.Context;

import javax.naming.InitialContext;

import javax.naming.NamingException;

56 Using an Entity-Bean Framework
  Apple Computer, Inc. November 2002

C H A P T E R 4

Developing Entity Beans

import javax.rmi.PortableRemoteObject;

import com.webobjects.foundation.*;

import com.webobjects.appserver.*;

public class Application extends WOApplication {

 private PersonHome _personHome = null;

 public static void main(String argv[]) {

 WOApplication.main(argv, Application.class);

 }

 public Application() {

 super();

 System.out.println("Welcome to " + this.name() + "!");

 // Create Person records.

 createPeople();

 // Show Person records.

 showPeople();

 // Remove Person records.

 removePeople();

 }

 /**

 * Creates Person records.

 */

 public void createPeople() {

 System.out.println();

 System.out.println("Creating Person records.");

 String[] names = {"Susana", "Charles", "Maria", "August"};

 NSArray personNames = new NSArray(names);

 for (int id = 1; id <= personNames.count(); id++) {

 addPerson(id, (String)personNames.objectAtIndex(id - 1));

 }

 System.out.println();

 }

C H A P T E R 4

Developing Entity Beans

Using an Entity-Bean Framework 57
  Apple Computer, Inc. November 2002

 /**

 * Displays Person records.

 */

 public void showPeople() {

 System.out.println("Showing Person records:");

 for (int id = 1; ; id++) {

 try {

 Integer personID = new Integer(id);

 Person person = personHome().findByPrimaryKey(personID);

 System.out.println("Name: " + person.getPersonName());

 }

 catch (FinderException fe) {

 break;

 }

 catch (RemoteException re) {

 re.printStackTrace();

 }

 }

 System.out.println();

 }

 /**

 * Removes Person records.

 */

 public void removePeople() {

 int id = 1;

 System.out.println("Removing Person records:");

 while (removePerson(id++));

 System.out.println();

 }

 /**

 * Adds a Person record.

 */

 public void addPerson(int id, String name) {

 try {

 Integer personID = new Integer(id);

 if (personIDIsAvailable(personID)) {

 Person person = personHome().create(personID, name);

 System.out.println("Added " + name + ".");

58 Using an Entity-Bean Framework
  Apple Computer, Inc. November 2002

C H A P T E R 4

Developing Entity Beans

 }

 else {

 System.out.println(name + " not added because ID " + personID + " is in

use.");

 }

 }

 catch (RemoteException re) {

 re.printStackTrace();

 }

 catch (CreateException ce) {

 // Unable to create record: Do nothing.

 }

 }

 /**

 * Removes a Person record.

 * @return <code>true</code> when successful, <code>false</code> otherwise.

 */

 public boolean removePerson(int id) {

 boolean removed = false;

 try {

 Integer personID = new Integer(id);

 // FinderException is thrown when the record doesn't exist.

 Person person = personHome().findByPrimaryKey(personID);

 System.out.println("Deleting " + person.getPersonName() + ".");

 personHome().remove(personID);

 removed = true;

 }

 catch (FinderException fe) {

 // Record not found: Do nothing.

 }

 catch (RemoteException re) {

 re.printStackTrace();

 }

 catch (RemoveException re) {

 re.printStackTrace();

 }

 return removed;

 }

C H A P T E R 4

Developing Entity Beans

Using an Entity-Bean Framework 59
  Apple Computer, Inc. November 2002

 /**

 * Determines whether a personID has been used.

 * @param personID the value to check;

 * @return <code>true</code> when personID is available,

 * <code>false</code> otherwise.

 */

 public boolean personIDIsAvailable(Integer personID) {

 boolean personID_available = true;

 try {

 personHome().findByPrimaryKey(personID);

 personID_available = false;

 }

 catch (FinderException fe) {

 // personID is available: Do nothing.

 }

 catch (RemoteException re) {

 re.printStackTrace();

 personID_available = false;

 }

 return personID_available;

 }

 /**

 * Obtains Person's home interface.

 * @return Person's home interface.

 */

 public PersonHome personHome() {

 if (_personHome == null) {

 try {

 Context jndiContext = new InitialContext();

 _personHome =

(PersonHome)PortableRemoteObject.narrow(jndiContext.lookup("PersonCMP"),

PersonHome.class);

 }

 catch (NamingException ne) {

 ne.printStackTrace();

 }

 }

 return _personHome;

 }

}

60 Advanced Entity-Bean Development
  Apple Computer, Inc. November 2002

C H A P T E R 4

Developing Entity Beans

Build and run the application. You should see the following output in the console:

Welcome to Person_Client!

Creating Person records.

Added Susana.

Added Charles.

Added Maria.

Added August.

Showing Person records:

Name: Susana

Name: Charles

Name: Maria

Name: August

Removing Person records:

Deleting Susana.

Deleting Charles.

Deleting Maria.

Deleting August.

Advanced Entity-Bean Development

This section addresses support for advanced entity-bean development, mainly
bean-managed persistence (BMP) and Data Access Objects (DAO).

Bean-Managed Persistence
CMP beans are easy to use because the bean container performs the data-store
operations; you don’t need to worry about executing SQL statements. However,
you can use BMP beans when you need to customize the way your beans store and
retrieve data from a data store.

C H A P T E R 4

Developing Entity Beans

Advanced Entity-Bean Development 61
  Apple Computer, Inc. November 2002

If you select Generate BMP Class in the Configure Bean pane of EOBeanAssistant
when you develop an entity bean from a data model, you get a file similar to the one
listed in Listing 4-6.

Listing 4-6 PersonBMP.java file

package my.ejb;

import javax.sql.DataSource;

import javax.naming.InitialContext;

import javax.ejb.*;

import java.sql.*;

public class PersonBMP implements EntityBean {

 protected DataSource _datasource;

 protected EntityContext _entityContext;

 protected java.lang.String personName;

 protected java.lang.Integer person_ID;

 /**

 * Empty constructor as required by the EJB spcification.

 */

 public PersonBMP() {

 }

 /**

 * This method creates a new entity from all required (e.g. non-NULL)

 * attributes.

 * @returns the primary key for this bean instance.

 * @throws javax.ejb.CreateException

 */

 public java.lang.Integer ejbCreate(java.lang.Integer person_ID) throws

CreateException{

 this.person_ID = person_ID;

 Connection connection = null;

 PreparedStatement statement = null;

 try {

 String sqlString = "INSERT INTO PERSON (PERSON_ID) VALUES (?)";

 connection = _datasource.getConnection();

 statement = connection.prepareStatement(sqlString);

62 Advanced Entity-Bean Development
  Apple Computer, Inc. November 2002

C H A P T E R 4

Developing Entity Beans

 statement.setInt(1, person_ID.intValue());

 int ret=statement.executeUpdate();

 if (ret != 1) {

 throw new CreateException();

 }

 }

 catch (SQLException e) {

 throw new EJBException(e);

 }

 finally {

 cleanup(connection, statement);

 }

 return person_ID;

 }

 /**

 */

 public void ejbPostCreate(java.lang.Integer person_ID) {

 }

 /**

 * This method creates a new entity from all attributes.

 * @returns the primary key for this bean instance.

 * @throws javax.ejb.CreateException

 */

 public java.lang.Integer ejbCreate(java.lang.Integer person_ID, java.lang.String

personName) throws CreateException {

 this.personName = personName;

 this.person_ID = person_ID;

 Connection connection = null;

 PreparedStatement statement = null;

 try {

 String sqlString = "INSERT INTO PERSON (PERSON_NAME, PERSON_ID) VALUES (?,?)";

 connection = _datasource.getConnection();

 statement = connection.prepareStatement(sqlString);

 statement.setString(1, personName);

 statement.setInt(2, person_ID.intValue());

 int ret=statement.executeUpdate();

 if (ret != 1) {

 throw new CreateException();

C H A P T E R 4

Developing Entity Beans

Advanced Entity-Bean Development 63
  Apple Computer, Inc. November 2002

 }

 }

 catch (SQLException e) {

 throw new EJBException(e);

 }

 finally {

 cleanup(connection, statement);

 }

 return person_ID;

 }

 /**

 */

 public void ejbPostCreate(java.lang.Integer person_ID, java.lang.String personName) {

 }

 /**

 * This method returns all entities in this table.

 * @returns all entities in the table in a java.util.Collection.

 * @throws javax.ejb.FinderException if there are problems connecting

 * to the database or executing the query.

 */

 public java.util.Collection ejbFindAll() throws FinderException {

 Connection connection = null;

 PreparedStatement statement = null;

 try {

 String sqlString = "SELECT PERSON_ID FROM PERSON";

 connection = _datasource.getConnection();

 statement = connection.prepareStatement(sqlString);

 ResultSet resultSet = statement.executeQuery();

 java.util.Collection primaryKeys = new java.util.ArrayList();

 while(resultSet.next()) {

 java.lang.Integer primaryKey = new java.lang.Integer(resultSet.getInt(1));

 primaryKeys.add(primaryKey);

 }

 resultSet.close();

 return primaryKeys;

 }

 catch (SQLException e) {

 throw new EJBException(e);

 }

64 Advanced Entity-Bean Development
  Apple Computer, Inc. November 2002

C H A P T E R 4

Developing Entity Beans

 finally {

 cleanup(connection, statement);

 }

 }

 /**

 * This method returns the bean associated with the primaryKey argument,

 * or throws a javax.ejb.ObjectNotFoundException.

 * @returns the bean associated with the primaryKey argument.

 * @throws javax.ejb.ObjectNotFoundException if an entity with the given

 * primary key doesn't exist.

 */

 public java.lang.Integer ejbFindByPrimaryKey(java.lang.Integer primaryKey) throws

FinderException {

 Connection connection=null;

 PreparedStatement statement=null;

 try {

 String sqlString = "SELECT PERSON_ID FROM PERSON WHERE PERSON_ID = ? ";

 connection = _datasource.getConnection();

 statement = connection.prepareStatement(sqlString);

 statement.setInt(1, primaryKey.intValue());

 ResultSet resultSet = statement.executeQuery();

 boolean found = resultSet.next();

 resultSet.close();

 if (found) {

 return primaryKey;

 }

 else {

 throw new ObjectNotFoundException("Could not find: " + primaryKey);

 }

 }

 catch (SQLException e) {

 throw new EJBException(e);

 }

 finally {

 cleanup(connection, statement);

 }

 }

 /**

 */

C H A P T E R 4

Developing Entity Beans

Advanced Entity-Bean Development 65
  Apple Computer, Inc. November 2002

 public java.lang.String getPersonName(){

 return personName;

 }

 /**

 */

 public void setPersonName(java.lang.String personName){

 this.personName = personName;

 }

 /**

 */

 public java.lang.Integer getPerson_ID() {

 return person_ID;

 }

 public void ejbRemove() throws RemoveException {

 Connection connection = null;

 PreparedStatement statement = null;

 try {

 String sqlString = "DELETE FROM PERSON WHERE PERSON_ID = ? ";

 connection = _datasource.getConnection();

 statement = connection.prepareStatement(sqlString);

 statement.setInt(1, person_ID.intValue());

 if (statement.executeUpdate() != 1) {

 throw new RemoveException();

 }

 }

 catch (SQLException e) {

 throw new EJBException(e);

 }

 finally {

 cleanup(connection, statement);

 }

 }

 public void ejbActivate() {

 java.lang.Integer person_ID = (java.lang.Integer) _entityContext.getPrimaryKey();

 this.person_ID = person_ID;

 }

66 Advanced Entity-Bean Development
  Apple Computer, Inc. November 2002

C H A P T E R 4

Developing Entity Beans

 public void ejbPassivate() {

 }

 public void ejbLoad() {

 Connection connection = null;

 PreparedStatement statement = null;

 try {

 String sqlString = "SELECT PERSON_NAME FROM PERSON WHERE PERSON_ID = ? ";

 connection = _datasource.getConnection();

 statement = connection.prepareStatement(sqlString);

 statement.setInt(1, person_ID.intValue());

 ResultSet resultSet = statement.executeQuery();

 if(!resultSet.next()) {

 resultSet.close();

 throw new NoSuchEntityException("ejbLoad failed. Primary key not found:

"+_entityContext.getPrimaryKey());

 }

 personName = resultSet.getString(1);

 resultSet.close();

 }

 catch(SQLException e) {

 throw new EJBException(e);

 }

 finally {

 cleanup(connection, statement);

 }

 }

 public void ejbStore() {

 Connection connection=null;

 PreparedStatement statement=null;

 try {

 String sqlString = "UPDATE PERSON SET PERSON_NAME = ? WHERE PERSON_ID = ? ";

 connection = _datasource.getConnection();

 statement = connection.prepareStatement(sqlString);

 statement.setString(1, personName);

 statement.setInt(2, person_ID.intValue());

 if(statement.executeUpdate() != 1) {

C H A P T E R 4

Developing Entity Beans

Advanced Entity-Bean Development 67
  Apple Computer, Inc. November 2002

 throw new NoSuchEntityException("ejbStore failed. Primary key not found:

"+_entityContext.getPrimaryKey());

 }

 }

 catch (SQLException e) {

 throw new EJBException(e);

 }

 finally {

 cleanup(connection, statement);

 }

 }

 public void setEntityContext(EntityContext entityContext) {

 _entityContext = entityContext;

 try {

 InitialContext context = new InitialContext();

 _datasource = (DataSource) context.lookup("java:comp/env/jdbc/DataSource");

 }

 catch(Exception ne) {

 throw new EJBException(ne);

 }

 }

 public void unsetEntityContext() {

 _entityContext = null;

 }

 private void cleanup(Connection connection, PreparedStatement statement) {

 if(statement != null) {

 try{

 statement.close();

 }

 catch(SQLException e) {

 // Do nothing.

 }

 }

 if(connection != null) {

 try {

 connection.close();

 }

 catch(SQLException e) {

68 Advanced Entity-Bean Development
  Apple Computer, Inc. November 2002

C H A P T E R 4

Developing Entity Beans

 // Do nothing.

 }

 }

 }

}

Data Access Objects
When you select Generate DAO Class in the Configure Bean pane of
EOBeanAssistant, you get a file similar to the one listed in Listing 4-7.

Listing 4-7 PersonDAO.java file

package my.ejb;

public interface PersonDAO {

 /**

 * This method creates a new entity from its required attributes.

 * @throws javax.ejb.CreateException;

 * @returns the primary key for this bean instance.

 */

 public java.lang.Integer ejbCreate(java.lang.Integer person_ID) throws

javax.ejb.CreateException;

 /**

 * This method creates a new entity from all attributes.

 * @throws javax.ejb.CreateException;

 * @returns the primary key for this bean instance.

 */

 public java.lang.Integer ejbCreate(java.lang.Integer person_ID, java.lang.String

personName) throws javax.ejb.CreateException;

 /**

 * This method returns the bean associated with the primaryKey argument,

 * or throws a javax.ejb.ObjectNotFoundException.

 * @throws javax.ejb.ObjectNotFoundException if an entity with the given

C H A P T E R 4

Developing Entity Beans

Advanced Entity-Bean Development 69
  Apple Computer, Inc. November 2002

 * primary key doesn't exist;

 * @returns the bean associated with the primaryKey argument.

 */

 public java.lang.Integer ejbFindByPrimaryKey(java.lang.Integer primaryKey) throws

javax.ejb.FinderException;

 public void ejbRemove() throws javax.ejb.RemoveException;

 public void ejbLoad();

 public void ejbStore();

 public void setBeanInstance(PersonBMP bean, javax.sql.DataSource datasource);

}

70 Advanced Entity-Bean Development
  Apple Computer, Inc. November 2002

C H A P T E R 4

Developing Entity Beans

Adding Source Files to a Bean- Framework Project 71
  Apple Computer, Inc. November 2002

C H A P T E R 5

5 Developing Bean Frameworks

This chapter tells you how to create enterprise-bean frameworks to be used by client
applications. It contains the following sections:

� “Adding Source Files to a Bean- Framework Project” (page 71).

� “Adding JAR Files to a Bean Framework Project” (page 72).

� “Creating Frameworks From Bean JAR Files in Windows” (page 73).

� “Adding CMP Fields to an EJB Deployment Descriptor” (page 74).

� “Generating EJB Stubs” (page 76).

Adding Source Files to a Bean- Framework Project

To add new enterprise-bean source files to an existing enterprise-bean framework
project, follow these steps:

1. Choose File > New File.

2. Choose Enterprise Java Bean from the New File pane of the Project Builder
Assistant.

3. In the New Enterprise Java Bean pane of the Assistant:

a. Enter the name of the bean in the File Name text field.

b. Enter the location where you want to place the bean’s source files in the
Location text field.

72 Adding JAR Files to a Bean Framework Project
  Apple Computer, Inc. November 2002

C H A P T E R 5

Developing Bean Frameworks

c. Choose the project you want to add the bean to from the Add to Project pop-
up menu.

4. Select “Create source files for a new Enterprise Java Bean” in the Create New
Enterprise Java Bean pane.

5. Select the type of bean you want to create in the Choose Bean Type pane of the
Assistant.

6. In the Enterprise Java Bean Class Name pane:

a. Enter the class name of the bean in the Class Name text field.

b. Enter the package name in the Package Name text field.

Adding JAR Files to a Bean Framework Project

To add an enterprise-bean JAR file to an existing enterprise-bean framework project
follow these steps:

1. Choose File > New File.

2. Choose Enterprise JavaBean form the New File pane of the Project Builder
Assistant.

3. In the New Enterprise JavaBean pane of the Assistant:

a. Enter the name of the bean in the File Name text field

b. Choose the project you want to add the bean to from the Add to Project pop-
up menu

4. In the Create New Enterprise JavaBean pane:

a. Select Use JAR Files

b. Enter the location of the JAR files you want to add in the Client Interfaces
JAR and Deployment JAR text fields (client-interface JAR files contain helper
classes that facilitate communication between clients and bean containers).

C H A P T E R 5

Developing Bean Frameworks

Creating Frameworks From Bean JAR Files in Windows 73
  Apple Computer, Inc. November 2002

Creating Frameworks From Bean JAR Files in Windows

In Windows, you have to create one enterprise-bean framework per JAR file. Follow
these steps to create an enterprise-bean framework:

1. Launch Project Builder.

2. Choose Project > New.

3. Choose Java WebObjects EJB Framework from the Project Type pop-up menu in
the New Project dialog and enter a location for your project.

4. In the Specify Enterprise JavaBeans pane of the EJB Framework Wizard:

a. Select “Use JAR Files.”

b. Enter the location of the JAR file you want to use in the “Client Interfaces jar”
text field.

74 Adding CMP Fields to an EJB Deployment Descriptor
  Apple Computer, Inc. November 2002

C H A P T E R 5

Developing Bean Frameworks

After WebObjects finishes generating the project, you should see a window like the
one in Figure 5-1.

Figure 5-1 Bean framework project in Windows

Adding CMP Fields to an EJB Deployment Descriptor

After creating a bean framework using Project Builder, you have to add to the
deployment descriptor the fields whose persistence is to be managed by the EJB
container. To accomplish this, you add cmp-field elements to the ejb-jar.xml file
in the META-INF directory of your project.

C H A P T E R 5

Developing Bean Frameworks

Adding CMP Fields to an EJB Deployment Descriptor 75
  Apple Computer, Inc. November 2002

Listing 5-1 lists the deployment descriptor of a simple entity bean with container-
managed persistence. The numbered lines show the cmp-field elements.

Listing 5-1 Deployment descriptor for a CMP entity bean

<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE ejb-jar PUBLIC '-//Sun Microsystems, Inc.//DTD Enterprise JavaBeans 1.1//EN'

'http://java.sun.com/j2ee/dtds/ejb-jar_1_1.dtd'>

<ejb-jar>

 <description>deployment descriptor for PersonBean</description>

 <display-name>PersonBean</display-name>

 <enterprise-beans>

 <entity>

 <description>deployment descriptor for PersonBean</description>

 <display-name>PersonBean</display-name>

 <ejb-name>PersonBean</ejb-name>

 <home>com.my.ejb.PersonHome</home>

 <remote>com.my.ejb.Person</remote>

 <ejb-class>com.my.ejb.PersonBean</ejb-class>

 <persistence-type>Container</persistence-type>

 <prim-key-class>com.my.ejb.PersonPK</prim-key-class>

 <reentrant>False</reentrant>

 <resource-ref>

 <description>the default data source for a CMP bean.</description>

 <res-ref-name>jdbc/DefaultCMPDatasource</res-ref-name>

 <res-type>javax.sql.DataSource</res-type>

 <res-auth>Container</res-auth>

 </resource-ref>

 <cmp-field> //1

 <field-name>PersonID</field-name> //2

 </cmp-field> //3

 <cmp-field> //4

 <field-name>firstName</field-name> //5

 </cmp-field> //6

 <cmp-field> //7

 <field-name>lastName</field-name> //8

 </cmp-field> //9

76 Generating EJB Stubs
  Apple Computer, Inc. November 2002

C H A P T E R 5

Developing Bean Frameworks

 <cmp-field> //10

 <field-name>middleInitial</field-name> //11

 </cmp-field> //12

 <cmp-field> //13

 <field-name>dateOfBirth</field-name> //14

 </cmp-field> //15

 </entity>

 </enterprise-beans>

</ejb-jar>

Generating EJB Stubs

When you build a bean-framework project you have the option of generating the
EJB stubs or not generating them. The EJB_STUB_GENERATION build setting of the EJB
Client Interfaces target is how you tell Project Builder whether to create the stubs.
The build setting can have two values: OpenORB and None. By default, the build
setting is set to OpenORB. This means that stubs are generated. By setting the build
setting to None, you tell project builder not to generate the stubs. This makes
building bean-frameworks faster. However, this setting requires that the
WOEJBTransport property be set to IntraVM. For more on the WOEJBTransport
property, see “Communication Transport Between Bean Clients and Containers”
(page 98).

You access the EJB_STUB_GENERATION build setting through the Expert View of the
EJB Client Inte.rfaces target, as shown in Figure 5-2.

C H A P T E R 5

Developing Bean Frameworks

Generating EJB Stubs 77
  Apple Computer, Inc. November 2002

Figure 5-2 Viewing the value of the EJB_STUB_GENERATION build setting

In Windows, you find the EJB_STUB_GENERATION build setting in the
Makefile.preamble file of the EJBServer subproject.

In bean-framework projects created with a version of WebObjects earlier than 5.2,
you may have to add the build setting yourself. Just click “Add new build setting”
in the lower-left corner of the Build Settings pane.

78 Generating EJB Stubs
  Apple Computer, Inc. November 2002

C H A P T E R 5

Developing Bean Frameworks

79
  Apple Computer, Inc. November 2002

C H A P T E R 6

6 Configuring Applications

This chapter shows you how to configure a bean-client application project so that it
can use resources like databases and JavaMail connections, explains how to ensure
that each enterprise bean is bound to the appropriate resources, and helps you
improve the performance of your applications through the use of the
WOEJBTransport property.

You need to configure three major items before deploying a bean-client application:

� Transaction manager. This is where you define the data sources that your
enterprise beans use to store their data and the JavaMail connections they use for
messaging.

� Persistence manager. Here you map the fields of your CMP (container-
managed persistence) beans to columns in tables of your data stores so that the
container can perform database transactions for the beans.

� EJB container. This is where you set bean-deployment properties such as
method transactions and permissions.

80
  Apple Computer, Inc. November 2002

C H A P T E R 6

Configuring Applications

You perform this configuration by editing the files in Table 6-1.

The chapter is divided in the following sections:

� “Configuration Overview” (page 81) provides you with a checklist of items you
need to review in the configuration files that WebObjects creates by default.

� “Transaction Manager Configuration” (page 85) explains how to configure the
transaction manager.

� “Persistence Manager Configuration” (page 86) tells you how to map enterprise-
bean fields to table columns.

� “Container Configuration” (page 93) explains how you configure the EJB
container.

� “Using External Containers” (page 96) shows you how to configure your client
application to use an external EJB container.

� “Communication Transport Between Bean Clients and Containers” (page 98)
tells you how communication between client applications and bean containers
can be streamlined.

Table 6-1 The configuration files of a bean-client application

Filename Purpose

TransactionManagerConfiguration.xml Defines data sources and JavaMail
connections.

GlobalTransactionConfiguration.xml Defines the JNDI name of a remote data
store.

CMPConfiguration.xml Defines bean-to-table and field-to-
column mapping.

OpenEJBConfiguration.xml Defines enterprise-bean deployment
behavior for the container.

C H A P T E R 6

Configuring Applications

Configuration Overview 81
  Apple Computer, Inc. November 2002

Configuration Overview

This section gives you a quick look at the configuration process for bean-client
applications. It lists the major points you need to look at before deploying your
application. It’s divided in the following sections:

� “Configuring the Transaction Manager” (page 81).

� “Configuring the EJB Container” (page 82).

� “Configuring the Persistence Manager” (page 84).

Configuring the Transaction Manager
The TransactionManagerConfiguration.xml file is where you enter connection
information, such as user name and password, for the data stores that your
application’s CMP beans use. You also configure JavaMail. The
OpenEJBConfiguration.xml file determines what you need to configure in this file:
the data stores, or JavaMail.

If your enterprise beans use container-managed persistence (the
OpenEJBConfiguration.xml file contains the string “<res-
type>javax.sql.DataSource</res-type>”), you need to configure at least one data
source.

Listing 6-1 Example dataSource element of the
TransactionManagerConfiguration.xml file

<dataSource>

<name>DefaultDatabase</name>

<class>tyrex.resource.jdbc.xa.EnabledDataSource</class>

<jar>file:/Users/Shared/JDBCDrivers/oracle/oracle8.1.7.1.zip</jar>

<config>

<driverName>jdbc:oracle:thin:@xsrv3.apple.com:1521:sqa</driverName>

<driverClassName>oracle.jdbc.OracleDriver</driverClassName>

<user>ejb</user>

82 Configuration Overview
  Apple Computer, Inc. November 2002

C H A P T E R 6

Configuring Applications

<password>ejb</password>

</config>

<limits>

<maximum>100</maximum>

<minimum>10</minimum>

<initial>10</initial>

<maxRetain>300</maxRetain>

<timeout>50</timeout>

 </limits>

</dataSource>

If your enterprise beans do not use container-managed persistence, you need to
delete the resources element from the TransactionManagerConfiguration.xml file,
which includes everything between the <resources> and </resources> tags as well
as the tags themselves.

If you need to define more than one data store, you can add dataSource elements for
each additional data store. See “Transaction Manager Configuration” (page 85) for
more information.

If your enterprise beans make use of JavaMail (the OpenEJBConfiguration.xml file
contains the string “<resource-type>javax.mail.Session</resource-type>”), you
need to configure JavaMail.

To configure JavaMail in the TransactionManagerConfiguration.xml file, add this to
the data-source section and customize as necessary:

<javamail>

<name>DefaultSMTPServer</name>

<property>

<key>mail.smtp.host</key>

<value>post.office.com</value>

</property>

</javamail>

Configuring the EJB Container
Once you have defined the resources that your enterprise beans utilize, you have to
review the container environment that WebObjects defined for you in the
OpenEJBConfiguration.xml file:

� Data sources and JavaMail-connection factories.

C H A P T E R 6

Configuring Applications

Configuration Overview 83
  Apple Computer, Inc. November 2002

If your enterprise beans use more than one data source or rely on JavaMail (as
defined in the TransactionManagerConfiguration.xml file, you have to make sure
that each bean is linked to the appropriate data source or JavaMail connection
factory (through the res-id element inside resource-ref) in the
OpenEJBConfiguration.xml file. See “resource-ref element” (page 133).

� Environment entries.

Scan the file for env-entry elements and make sure that they contain the
appropriate values for your situation. See “env-entry element” (page 125).

� Method-transaction settings.

Make sure that the trans-attribute element of method-transaction elements is
set to the appropriate transaction type. If the enterprise bean does not define the
transaction type for a method, WebObjects sets it to Required. See “Containers
Section” (page 93), and “method-transaction element” (page 130) for details.

� One entity-container element per database.

When your CMP beans use more than one database, you need to

� group the CMP beans that use the same data store under the same entity-
container element

� create a global transaction manager configuration file by duplicating the
GlobalTransactionConfiguration.xml file and changing
"Global_TX_Database" so that it names the additional data source (for
example, "Global_TX_Personnel")

In general, you should use the following grouping:

� one entity-container element per distinct database that encloses its
corresponding CMP beans (for more information, see “entity-container
element” (page 124))

� one stateless-session-container element that encloses all stateless beans

� one stateful-session-container element that encloses all stateful beans

84 Configuration Overview
  Apple Computer, Inc. November 2002

C H A P T E R 6

Configuring Applications

Configuring the Persistence Manager
This section explains how to configure the container for CMP beans. If your
application doesn’t use CMP beans, you don’t need to configure the files mentioned
here. In fact, the files are only present in your project when at least one of your
enterprise beans uses container-managed persistence.

GlobalTransactionConfiguration.xml

This is where you define the JNDI name of a remote data store. It must be identical
to the name used in the resource-ref element of a bean in the CMPConfiguration.xml
file. You must have one global-transaction configuration file per data store.

CMPConfiguration.xml

This is where you map enterprise beans to tables and their fields (or instance
variables) to columns in those tables. You also define a bean’s identity or primary
key and configure key-value generators. This is an example of a
CMPConfiguration.xml file:

<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE mapping PUBLIC "-//EXOLAB/Castor Mapping DTD Version 1.0//EN"

 "http://castor.exolab.org/mapping.dtd">

<mapping>

 <class key-generator="MAX" identity="mPropID"

name="webobjectsexamples.realestate.property.PropertyCMPBean">

 <map-to table="EJB_PROPERTY"/>

 <field direct="true" name="mPropID" type="java.lang.Integer">

 <sql name="PROP_ID" type="integer"/>

 </field>

 <field direct="true" name="mPropAddress" type="java.lang.String">

 <sql name="PROP_ADDR" type="varchar"/>

 </field>

 <field direct="true" name="mPropDate" type="java.util.Date">

 <sql name="PROP_LIST_DATE" type="date"/>

 </field>

 <field direct="true" name="mPropPrice" type="float">

 <sql name="PROP_ASK_PRICE" type="real"/>

 </field>

 </class>

</mapping>

C H A P T E R 6

Configuring Applications

Transaction Manager Configuration 85
  Apple Computer, Inc. November 2002

For more information, see “Persistence Manager Configuration” (page 86).

Transaction Manager Configuration

WebObjects includes the Tyrex transaction manager. You configure it through the
TransactionManagerConfiguration.xml file.

The only item you need to configure for the transaction manager is the domain. A
transaction domain provides centralized management of transactions. It defines the
policy for all transactions created from that domain, such as default timeout,
maximum number of open transactions, support, and journaling. In addition, the
domain maintains resource managers such as JDBC data sources and JCA (J2EE
Connector Architecture) connectors.

This is an example of a TransactionManagerConfiguration.xml file:

<domain>

 <name>default</name>

 <resources>

 <dataSource>

 <name>DefaultDatabase</name>

 <class>tyrex.resource.jdbc.xa.EnabledDataSource</class>

 <jar>/Library/Java/Extensions/OpenBaseJDBC.jar</jar>

 <config>

 <driverName>jdbc:openbase://localhost/Person</driverName>

 <driverClassName>com.openbase.jdbc.ObDriver</driverClassName>

 <transactionTimeout>60</transactionTimeout>

 <isolationLevel>Serializable</isolationLevel>

 </config>

 <limits>

 <maximum>100</maximum>

 <minimum>10</minimum>

 <initial>10</initial>

Note: If your application uses only session beans and does not need to access a
data store, you must remove the resources element from the
TransactionManagerConfiguration.xml file.

86 Persistence Manager Configuration
  Apple Computer, Inc. November 2002

C H A P T E R 6

Configuring Applications

 <maxRetain>300</maxRetain>

 <timeout>50</timeout>

 </limits>

 </dataSource>

 </resources>

</domain>

For details on how to write the transaction manager configuration file, see
“Elements of the Transaction Manager Configuration File” (page 114).

Persistence Manager Configuration

Container-managed persistence is handled by the Castor JDO component. It
generates SQL statements that the container uses to update your database. All you
have to do is map your data store’s table columns to entity beans’ fields.

The persistence manager configuration files specify how the persistence manager
obtains a connection to a data source, the mapping between Java classes and tables
in the data store, and the service provider to use to talk to the data store.

These are supported database servers:

� Generic JDBC engine

� Oracle 7 and Oracle 8

� Sybase 11 and SQL Anywhere

� Microsoft SQL Server

� DB/2

� PostgreSQL 6.5 and 7

� Hypersonic SQL

� InstantDB

� Interbase

� MySQL

� SAP DB

C H A P T E R 6

Configuring Applications

Persistence Manager Configuration 87
  Apple Computer, Inc. November 2002

You configure the persistence manager by editing three files:

� CMPConfiguration.xml

This file defines the correspondence between table columns and the fields of
your enterprise beans. It also defines how CMP beans are made persistent. This
mapping is used in global transaction configuration files.

� GlobalTransactionConfiguration.xml

This file defines the configuration that the persistence manager uses when a
client uses an enterprise bean with a transaction context. This configuration
requires that the data source be specified in the JNDI registry. The persistence
manager creates the data source connection, which can be used in bean-
managed as well as container-managed persistence beans.

Mapping Enterprise Beans to Data-Store Tables
One of the tasks you need to perform to accomplish bean persistence is to map the
enterprise bean fields to be persisted to table columns or other types of permanent
storage. You accomplish this by editing the CMPConfiguration.xml file.

The Mapping File

The mapping information you enter in the CMPConfiguration.xml file is written from
the point of view of the enterprise bean and describes how the contents of the bean’s
fields are translated to and from permanent storage.

This is an example of the contents of the CMPConfiguration.xml file:

<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE mapping PUBLIC "-//EXOLAB/Castor Mapping DTD Version 1.0//EN"

 "http://castor.exolab.org/mapping.dtd">

<mapping>

 <class key-generator="MAX" identity="mPropID"

name="webobjectsexamples.realestate.property.PropertyCMPBean">

 <map-to table="EJB_PROPERTY"/>

 <field direct="true" name="mPropID" type="java.lang.Integer">

 <sql name="PROP_ID" type="integer"/>

 </field>

 <field direct="true" name="mPropAddress" type="java.lang.String">

 <sql name="PROP_ADDR" type="varchar"/>

88 Persistence Manager Configuration
  Apple Computer, Inc. November 2002

C H A P T E R 6

Configuring Applications

 </field>

 <field direct="true" name="mPropDate" type="java.util.Date">

 <sql name="PROP_LIST_DATE" type="date"/>

 </field>

 <field direct="true" name="mPropPrice" type="float">

 <sql name="PROP_ASK_PRICE" type="real"/>

 </field>

 </class>

</mapping>

For details in how to write the CMPConfiguration.xml file, see “Elements of the
Component-Managed Persistence Configuration File” (page 102).

Primary Keys

The persistence manager can generate the values of identity properties
automatically with the key generator. When the enterprise bean’s create method is
invoked, the persistence manager sets the value of the identity property to the value
obtained from the key generator. The key generator can use one of several
algorithms available to generate the value. You can use generic algorithms or
algorithms specific to your data source. For details on setting the algorithm to use
for an enterprise bean’s identity property, see “class element” (page 105) and “key-
generator element” (page 110).

You can use the key generator only under the following conditions:

� The primary-key value is not determined from the arguments to the bean’s
ejbCreate method.

� The bean’s identity can be determined through a single field of numeric (byte
through long) or String type.

The following sections describe the key-generator algorithms you can use.

MAX

This generic algorithm fetches the maximum value of the primary key (MAX) and
locks the record found until the end of the transaction. When the transaction ends,
the value generated is (MAX + 1). Because of the lock, concurrent transactions that
use the same algorithm wait until the end of the original transaction to obtain a new
primary-key value. Note that it is still possible to perform multiple inserts during
the same transaction.

C H A P T E R 6

Configuring Applications

Persistence Manager Configuration 89
  Apple Computer, Inc. November 2002

With this algorithm, duplicate-key exceptions are almost completely avoided. The
only case in which they might occur is when inserting a row into an empty table
because there are no rows to lock. In this case, the value generated is 1.

This is an example of a definition of a key generator using the MAX algorithm:

<key-generator name="MAX">

<param name="table" value="PERSON"/>

<param name="key-column" value="PERSON_ID"/>

</key-generator>

HIGH/LOW

This generic algorithm needs an auxiliary table or sequence table containing a
unique column (the key column) that stores table names and, a numeric (integer,
bigint, or numeric) column used to reserve primary-key values.

The following table describes the parameters used by the HIGH/LOW key
generator.

Table 6-2 HIGH/LOW key generator parameters

Parameter Description Use

table Sequence-table name. Mandatory

key-column Name of the column containing table names. Mandatory

value-column Name of the column used to reserve primary-
key values.

Mandatory

grab-size Number of primary-key values the key
generator reserves at a time.

Optional;
default="10"

same-connection Indicates whether the key generator must use
the same connection when accessing the
sequence table. Values: (true or false). Must
be set to true when working in an EJB
environment.

Optional;
default="false"

global Indicates whether the key generator produces
globally unique keys. Values: (true or false).

Optional;
default="false"

90 Persistence Manager Configuration
  Apple Computer, Inc. November 2002

C H A P T E R 6

Configuring Applications

The first time the key generator is called, it finds the row for the target table in the
sequence table, locks it, reads the last reserved primary-key value, increases it by
the grab size (the number of primary-key values to reserve at a time), and unlocks
the row. In subsequent requests for primary-key values for the same target table, the
key generator provides primary-key values from the reserved values until it runs
out. When it has no more primary-key values, it accesses the sequence table to
obtain a new group of primary-key values.

If grab-size is set to 1, the sequence tables contain the true maximum primary-key
value at all times. In this case, the HIGH/LOW key generator is essentially
equivalent to the MAX key generator.

If the global is set to true, the sequence table contains only one row instead of one
row per table. The key generator uses this row for all tables.

UUID

This algorithm generates global unique primary-key values. The value generated is
a combination of the host’s IP address, the current time in milliseconds since 1970,
and a static counter. The complete key consists of a 30-character, fixed-length string.
This algorithm has no parameters. The primary-key column must be of type char,
varchar, or longvarchar.

IDENTITY

The IDENTITY key generator can be used only with auto-increment primary-key
columns (identities) in Sybase ASE/ASA, MS SQL Server, MySQL, and Hypersonic
SQL.

After an insert, except when using MySQL or Hypersonic SQL, the key generator
obtains the primary-key value from the @@identity system variable, which contains
the last identity value for the current database connection. When using MySQL, the
system function LAST_INSERT_ID() is used. For Hypersonic SQL, IDENTITY() is used.

Note: The sequence table must be in the same database as the table for which
primary-key values are to be generated. When working with multiple databases,
you must have one sequence table in each database that contains a table for which
the key generator is to provide primary-key values.

C H A P T E R 6

Configuring Applications

Persistence Manager Configuration 91
  Apple Computer, Inc. November 2002

SEQUENCE

This algorithm can be used with only Oracle, Oracle8i, PostgreSQL, Interbase, and
SAP DB. It generates keys using sequences.

The following table describes the parameters for the SEQUENCE key generator.

Usually a sequence is used for only one table. Therefore, in general, you have to
define one key generator per table. However, if you adhere to a naming convention
for sequences, you can use one key generator for multiple tables.

For example, if you always obtain sequence names by adding _seq to the name of
the corresponding table, you can set sequence to "{0}_seq" (the default).

The way this key generator performs its function depends on the data-source server
being used.

With PostgreSQL, this key generator performs SELECT nextval(sequence_name)
before the insert and produces the identity value that is then used when it performs
INSERT.

With Interbase, the key generator performs SELECT gen_id(sequence_name,
increment) from rdb$database before the insert.

Table 6-3

Parameter Description Use

sequence Sequence name. Optional;
default="{0}_seq"

returning RETURNING mode for Oracle8i.
Values: (true or false)

Optional;
default="false"

increment Increment for Interbase. Optional;
default="1"

trigger Indicates whether there is a trigger that
generates primary-key values.

Optional;
default="false"

92 Persistence Manager Configuration
  Apple Computer, Inc. November 2002

C H A P T E R 6

Configuring Applications

With Oracle, by default (returning="false") and with SAP DB, the key generator
transforms the insert statement generated by the persistence manager to the form
INSERT INTO table_name (pk_name, ...) VALUES (sequence_name.nextval, ...),
executes it, and then it performs SELECT sequene_name.currval FROM table_name to
obtain the identity value.

With Oracle8i, when you set returning to "true", RETURNING primary_key_name INTO
? is appended to the insert statement shown above, which is a more efficient
procedure to generate primary-key values. Therefore, the persistence manager
fetches the identity value when it executes the insert statement (both the insertion
and the procurement of the identity value occur in one statement).

If your table has an on_Insert trigger, like the one listed below, that already
generates values for the table’s primary key, you can set trigger to "true".

create or replace trigger "trigger_name"

before insert on "table_name" for each row

begin

select "sequence_name".nextval into :new."pk_name" from dual;

end;

This prevents "sequence_name".nextval from being pulled twice: first during the
insert and then in the trigger. It’s also useful in combination with returning="true"
for Oracle, in which case you may not specify the sequence name.

Defining Data Sources
Global data-source configuration files tell the transaction manager how to locate a
data store using JNDI. They contain the mapping between enterprise beans and
tables in a data store. The transaction manager then uses the information in
TransactionManagerConfiguration.xml to create database connections.

The persistence manager can obtain a connection to a data store in one of three
ways:

� using a JDBC 2.0 driver and URL

� using a JDBC 2.0 data source

� using a JNDI data source

C H A P T E R 6

Configuring Applications

Container Configuration 93
  Apple Computer, Inc. November 2002

If you are deploying the application inside a J2EE environment, you should use the
JNDI method because it allows the application server to manage connection pooling
and distributed transactions.

To allow for concurrent transactions and to ensure data integrity, two data-store
definitions should never use overlapping mappings.

The following is the JNDI configuration of a global data store:

<database name="ebiz" engine="oracle">

<jndi name="java:comp/env/jdbc/mydb"/>

<mapping href="Contents/Resources/CMPConfiguration.xml"/>

</database>

Container Configuration

The OpenEJBConfiguration.xml file contains deployment information, as well as
transaction and security details. Its contents are divided in two sections: containers,
and facilities. WebObjects writes this file for you. However, you need to make
additions, especially regarding the transaction type for methods and mapping
physical roles to logical roles.

Containers Section
This section of the EJB configuration file holds four types of elements: containers,
security-role, method-permission, and method-transaction.

The containers element can contain three types of elements: stateless-session-
container, stateful-session-container, and entity-container. Each of these
elements holds definitions for the corresponding types of enterprise beans: stateless
session bean, stateful session bean, and entity bean (CMP and BMP).

94 Container Configuration
  Apple Computer, Inc. November 2002

C H A P T E R 6

Configuring Applications

One or more logical security roles are defined using security-role elements.
Physical security roles are mapped to logical security roles in the facilities section of
the file. You have to define the logical security roles that you want to use in your
application. Then you assign those roles to the methods of the enterprise beans—
using method-permission elements—as you see fit.

The method-transaction element tells the container how to manage transactions for
each method invocation. You must determine what kind of transaction attribute
each enterprise bean’s methods should have, and modify the contents of the method-
transaction element as appropriate. Table 6-4 provides a brief explanation of
transaction attributes.

Listing 6-2 shows an example of the containers section of the EJB configuration file:

Note: WebObjects generates a default role and assigns it to all method
permissions. You have to add the roles adequate for your situation and assign
them to each of the methods of your enterprise beans through method-permission
elements.

Table 6-4 Transaction attributes

Transaction attribute Meaning

NotSupported The current transaction is suspended until the method
ends.

Supports If in a transaction, the method is included in it.

Required The method must be invoked within a transaction.
Otherwise, a new transaction is created for the method.

RequiresNew A new transaction is always created for the method.

Mandatory The method must be invoked within a transaction.
Otherwise, a
javax.transaction.TransactionRequiredException is
thrown.

Never The method must never be invoked within a transaction.
Otherwise, a java.rmi.RemoteException is thrown.

C H A P T E R 6

Configuring Applications

Container Configuration 95
  Apple Computer, Inc. November 2002

Listing 6-2 Example containers section of the OpenEJBConfiguration.xml file

<container-system>

<containers>

<stateless-session-container>

<container-name>Basic Stateless Container</container-name>

<stateless-bean>

<description>deployment descriptor for HelloBean</description>

<display-name>HelloBean</display-name>

<ejb-deployment-id>HelloBean</ejb-deployment-id>

<home>com.my.ejb.HelloHome</home>

<remote>com.my.ejb.Hello</remote>

<ejb-class>com.my.ejb.HelloBean</ejb-class>

<transaction-type>Container</transaction-type>

</stateless-bean>

</stateless-session-container>

</containers>

<security-role>

<role-name>everyone</role-name>

</security-role>

<method-permission>

<role-name>everyone</role-name>

<method>

<ejb-deployment-id>HelloBean</ejb-deployment-id>

<method-name>*</method-name>

</method>

</method-permission>

<method-transaction>

<method>

<ejb-deployment-id>HelloBean</ejb-deployment-id>

<method-intf>Remote</method-intf>

<method-name>message</method-name>

<method-params/>

</method>

<trans-attribute>NotSupported</trans-attribute>

</method-transaction>

</container-system>

96 Using External Containers
  Apple Computer, Inc. November 2002

C H A P T E R 6

Configuring Applications

Facilities Section
This section of the EJB configuration file specifies the runtime environment: proxy-
generation attributes, remote JNDI contexts, database connections, and J2EE
services. The elements used are intra-vm-server, remote-jndi-contexts,
connectors, and services, respectively. You should not edit this part of the
OpenEJBConfiguration.xml file.

Using External Containers

You may want to use an external EJB container instead of an internal one in your
bean-client applications when you already have a powerful, reliable container. In
this case, you need to remove all the configuration files listed at the beginning of this
chapter from your project.

To configure your application to use a single, external EJB container, you need to set
system properties when you launch your application. You can set them through the
command line. The following list details the properties you need to set for various
EJB containers:

� OpenEJB

-Djava.naming.factory.initial=org.openorb.rmi.jndi.CtxFactory

-Djava.naming.provider.url=

corbaloc::1.2@<HOST>:<NAMESERVICE_PORT>/NameService"

-Dorg.omg.CORBA.ORBClass=org.openorb.CORBA.ORB

-Dorg.omg.CORBA.ORBSingletonClass=org.openorb.CORBA.ORBSingleton

-Djavax.rmi.CORBA.StubClass=org.openorb.rmi.system.StubDelegateImpl

-Djavax.rmi.CORBA.UtilClass=org.openorb.rmi.system.UtilDelegateImpl

-Djavax.rmi.CORBA.PortableRemoteObjectClass=

org.openorb.rmi.system.PortableRemoteObjectDelegateImpl

� iPlanet

-Djava.naming.factory.initial=com.sun.jndi.cosnaming.CNCtxFactory

-Djava.naming.provider.url=iiop://$<HOST>:$<NAMESERVICE_PORT>

C H A P T E R 6

Configuring Applications

Using External Containers 97
  Apple Computer, Inc. November 2002

� Web Logic

-Djava.naming.factory.initial=weblogic.jndi.WLInitialContextFactory

-Djava.naming.provider.url=t3://<HOST>:<NAMESERVICE_PORT>

� WebSphere

-Djava.naming.factory.initial=

com.ibm.websphere.naming.WsnInitialContextFactory

-Djava.naming.provider.url=iiop://<HOST>:<NAMESERVICE_PORT>"

If you want to use more than one EJB container in your application, you have to set
these properties through application code. For example, to set the JNDI context for
the Web Logic EJB container, you would add the following method listed in Listing
6-3.

Listing 6-3 The initialContext method setting external-container properties

/**

 * Obtains the JNDI context.

 * @return the JNDI context.

 */

public static Context initialContext() throws NamingException {

Properties properties = new Properties();

properties.put(Context.INITIAL_CONTEXT_FACTORY,

"weblogic.jndi.WLInitialContextFactory");

properties.put(Context.PROVIDER_URL, "t3://<HOST>:<NAMESERVICE_PORT>");

return new InitialContext(properties);

}

98 Communication Transport Between Bean Clients and Containers
  Apple Computer, Inc. November 2002

C H A P T E R 6

Configuring Applications

Communication Transport Between Bean Clients and
Containers

Bean-client applications can communicate with bean containers using one of two
transports: Common Object Request Broker Architecture (CORBA) or intra virtual
machine. You determine how clients communicate with bean containers through
the WOEJBTransport property. It can have one of two values: OpenORB for the CORBA
transport or IntraVM for the intra-VM transport.

Using CORBA requires that bean frameworks be built with EJB stubs. See
“Generating EJB Stubs” (page 76) for information on generating EJB stubs when
building bean frameworks. You must use CORBA when the client application and
the bean container do not run on the same virtual machine.

When you know that the bean client and the container run on the same virtual
machine, you should set the WOEJBTransport property to IntraVM. This streamlines
communication between bean client and container as well as facilitate debugging
your enterprise beans in Project Builder.

Generating the EJB Configuration Files

After you add bean frameworks to an existing bean-client project, you need to
regenerate the EJB configuration files. Also, WebObjects 5.2, bean-client projects do
not require the LocalTransactionConfiguration.xml file. Therefore, you need delete
the file from the projects and re-generate the remaining configuration files.

To re-generate the configuration files of a bean-client project, you run OpenEJBTool
with the bean-client project path and the path of each of the bean frameworks it
uses, as shown below.

% cd /System/Library/WebObjects/JavaApplications/OpenEJBTool.woa

% ./OpenEJBTool -o <bean-client_project_path> <bean-framework1_path> ...

<bean-frameworkN_path>

C H A P T E R 6

Configuring Applications

EJB Container Operation Logging 99
  Apple Computer, Inc. November 2002

EJB Container Operation Logging

EJB-container operations are logged using Log4J, which is an open-source package
that allows you to turn on logging for an application without changing its source
code. Logging is configured through the logging.conf file, which is placed in the
Resources group of a project. Listing 6-4 shows the logging.conf file. You modify
this file to change the debugging level for the container. For information and
documentation on Log4J, see http://jakarta.apache.org/log4jl.

Listing 6-4 Logging.conf file

This file sets up log4j logging for the EJB container

#

The default setup will log error messages to stdout

log4j.rootCategory=warn, R //1

Fileappender

log4j.appender.F=org.apache.log4j.FileAppender //2

Edit this line to suit you application name

log4j.appender.F.file=/tmp/application.log //3

log4j.appender.F.layout=org.apache.log4j.PatternLayout //4

log4j.appender.F.layout.ConversionPattern=%5p [%t] (%C:%L) - %m%n //5

Console Appender

log4j.appender.R=org.apache.log4j.ConsoleAppender //6

log4j.appender.R.layout=org.apache.log4j.PatternLayout //7

log4j.appender.R.layout.ConversionPattern=%5p [%t] (%C:%L) - %m%n //8

log4j.appender.R.Target=System.err //9

General logging for the EJB container

#log4j.category.OpenEJB=debug //10

http://jakarta.apache.org/log4jl

100 EJB Container Operation Logging
  Apple Computer, Inc. November 2002

C H A P T E R 6

Configuring Applications

logging for Container-Managed Persistence

#log4j.category.CastorCMP=debug //11

CORBA layer logging

#log4j.category.CORBA-Adapter=warn //12

logging of transaction handling

#log4j.category.Transactions=info //13

Transaction Manager and Connection Pool logging

#log4j.category.tyrex.default=debug //14

#log4j.category.tyrex.ots=debug //15

#log4j.category.tyrex.security=debug //16

#log4j.category.tyrex.resource=debug //17

#log4j.category.tyrex.resource.castor=debug //18

#log4j.category.tyrex.resource.DefaultDatabase=debug //19

The line numbered 1 configures the logging level of the root category and the
output channel. In this case, warn tells Log4J that it should log warnings only. This
setting applies to all the subcategories of rootCategory that do not override it. The
second argument indicates which appender to use: R for the console output and F
for file output.

The lines numbered 2 through 5 configure file logging. You must only change lines
3 through 5, however.

The lines numbered 6 through 9 configure console logging.

The lines numbered 10 through 19 configure the logging level of several
components.

101
  Apple Computer, Inc. November 2002

C H A P T E R 7

7 Configuration Reference

The elements (defined by tags) of an XML file can include attributes, other elements,
or both. The sections below include tables that describe those elements. In the
Members column, element names are between < and > characters. Table 7-1
describes the meaning of the symbols in the Use column in the tables that describe
an element’s members.

Table 7-1 Element usage symbols

Symbol in
Use column Meaning

Nothing The tag or attribute is required by the parent tag.

? The element or attribute can be omitted.

* The element can be present zero or more times
within the parent element.

+ The element must be present at least once within
the parent element.

102 Elements of the Component-Managed Persistence Configuration File
  Apple Computer, Inc. November 2002

C H A P T E R 7

Configuration Reference

Elements of the Component-Managed Persistence
Configuration File

The DTD for the CMPConfiguration.xml file is located at http://castor.exolab.org/
mapping.dtd, and is shown in Listing 7-1.

Listing 7-1 DTD for CMPConfiguration.xml

<?xml version="1.0" encoding="UTF-8"?>

<!ELEMENT mapping (description?, include*, class*, key-generator*)>

<!ELEMENT include EMPTY>

<!ATTLIST include

 href CDATA #REQUIRED>

<!ELEMENT class (description?, cache-type?, map-to?, field+)>

<!ATTLIST class

 name ID #REQUIRED

 extends IDREF #IMPLIED

 depends IDREF #IMPLIED

 identity CDATA #IMPLIED

 access (read-only | shared | exclusive | db-locked) "shared"

 key-generator IDREF #IMPLIED >

<!ELEMENT cache-type EMPTY>

<!ATTLIST cache-type

 type (none | count-limited | time-limited | unlimited) "count-

limited"

 capacity NMTOKEN #IMPLIED>

<!ELEMENT map-to EMPTY>

<!ATTLIST map-to

 table NMTOKEN #IMPLIED

 xml NMTOKEN #IMPLIED

http://castor.exolab.org/mapping.dtd
http://castor.exolab.org/mapping.dtd

C H A P T E R 7

Configuration Reference

Elements of the Component-Managed Persistence Configuration File 103
  Apple Computer, Inc. November 2002

 ns-uri NMTOKEN #IMPLIED

 ns-prefix NMTOKEN #IMPLIED

 ldap-dn NMTOKEN #IMPLIED

 ldap-oc NMTOKEN #IMPLIED>

<!ELEMENT field (description?, sql?, bind-xml?, ldap?)>

<!ATTLIST field

 name NMTOKEN #REQUIRED

 type NMTOKEN #IMPLIED

 required (true | false) "false"

 direct (true | false) "false"

 lazy (true | false) "false"

 get-method NMTOKEN #IMPLIED

 set-method NMTOKEN #IMPLIED

 create-method NMTOKEN #IMPLIED

 collection (array | vector | hashtable | collection | set | map)

#IMPLIED>

<!ELEMENT sql EMPTY>

<!ATTLIST sql

 name NMTOKEN #IMPLIED

 type CDATA #IMPLIED

 many-key NMTOKEN #IMPLIED

 many-table NMTOKEN #IMPLIED

 dirty (check | ignore) "check">

<!ELEMENT bind-xml EMPTY>

<!ATTLIST bind-xml

 name NMTOKEN #IMPLIED

 type NMTOKEN #IMPLIED

 matches NMTOKEN #IMPLIED

 node (attribute | element | text) #IMPLIED>

<!ELEMENT ldap EMPTY>

<!ATTLIST ldap

 name NMTOKEN #IMPLIED>

<!ELEMENT key-generator (param*)>

<!ATTLIST key-generator

 name CDATA #REQUIRED

 alias CDATA #IMPLIED>

104 Elements of the Component-Managed Persistence Configuration File
  Apple Computer, Inc. November 2002

C H A P T E R 7

Configuration Reference

<!ELEMENT param EMPTY>

<!ATTLIST param

 name CDATA #REQUIRED

 value CDATA #REQUIRED>

<!ELEMENT description (#PCDATA)>

The following sections describe the elements of the CMPConfiguration.xml file.

bind-xml element
The attribute or element name and XML schema must be specified for all XML-
dependent fields. The node attribute indicates whether the field maps to an attribute,
another tag, or the textual content of this tag. Only simple types (primitives, date,
string, and so on) can be used for attribute values. Only one field can be specified as
the content model in a given object. Table 7-2 describes the bind-xml element’s
members.

Table 7-2 Members of the bind-xml element

Member Use Description

name ? Table-column name.

type ?

matches ?

node ? Value: attribute, element, or text.

C H A P T E R 7

Configuration Reference

Elements of the Component-Managed Persistence Configuration File 105
  Apple Computer, Inc. November 2002

cache-type element
This element tells the container how to cache instances of this enterprise bean. Table
7-3 describes the members of this element.

class element
This element describes the mapping between a Java class (enterprise bean
implementation) and an SQL table, an XML element, an LDAP entry, or any other
engine. To map a class into LDAP, an identity field must be specified.

A class is specified by its Java class name, including the package name; for example,
com.my.ejb.Person. If a class extends another class for which a mapping file exists,
you should use the extends attribute to include the class being extended. Do not use
the extends attribute to describe class inheritance that is not reflected in any
mapping.

Table 7-3 Members of the cache-type element

Member Use Description

type Value: none, count-limited, time-limited, or unlimited.
Default = "count-limited".

capacity ? The maximum number of instances of this bean the
container is to create.

106 Elements of the Component-Managed Persistence Configuration File
  Apple Computer, Inc. November 2002

C H A P T E R 7

Configuration Reference

The class mapping specifies each field in the class that is mapped to a table column.
Fields that are not mapped are not stored, read, or otherwise processed. Table 7-4
describes the class element’s members.

Table 7-4 Members of the class element

Member Use Description

name Class name.

extends ? Implied by the persistence manager. It’s the name of
the class this class extends. Used only if this class
extends another class for which mapping information
is provided.

depends ? Implied by the persistence manager.

identity ? Implied by the persistence manager.

access Value: read-only, shared, exclusive or db-locked.
Default = "shared"

key-generator ? Name or alias of the key generator to use. Use only for
classes with single-property, numeric ID fields. If your
class uses a compound primary key or the primary key
contains strings, you must use a custom key generator;
that is, the bean itself must create the primary-key
values. See “key-generator element” (page 110).

<description> ? Optional class description.

<cache-type> ? See “cache-type element” (page 105).

<map-to> ? Used if the name of the element this class maps to is
not the same as the name of the class. By default, the
persistence manager infers the name of the element
from the name of the class: a class named SocialEvent
is mapped to an element called social-event. See
“map-to element” (page 112).

<field> + Describes the properties of an enterprise bean. See
“field element” (page 107).

C H A P T E R 7

Configuration Reference

Elements of the Component-Managed Persistence Configuration File 107
  Apple Computer, Inc. November 2002

field element
This element specifies the mapping between an enterprise bean’s field and an SQL
table column, an XML element or attribute, an LDAP attribute, and so on. Table 7-
5describes its members.

The mapping is specified from the perspective of the bean’s implementation class.
The field name is required even if no such field exists in the class in order to support
field references. A field is an abstraction of an enterprise bean’s property: It can refer
to a property directly (by mapping to a public instance variable, not static nor
transient) or indirectly by using accessor methods.

Table 7-5 Members of the field element

Item Use Description

name Name of the enterprise bean’s field being mapped.

type ? Java type of the field. For example, java.lang.Integer.

required ? Value: true or false. Default = "false". Indicates
whether the field is optional or required.

direct ? Value: true or false. Default = "false".

lazy ? Value: true or false. Default = "false".

get-method ? Implied by the persistence manager.

set-method ? Implied by the persistence manager.

create-method ? Implied by the persistence manager.

collection ? Value: array, vector, hashtable, collection, set, or map .
Implied by the persistence manager.

<description> ? Optional field description.

<sql> ? See “sql element” (page 113).

<bind-xml> ? See “bind-xml element” (page 104).

<ldap> ? See “ldap element” (page 111).

108 Elements of the Component-Managed Persistence Configuration File
  Apple Computer, Inc. November 2002

C H A P T E R 7

Configuration Reference

Unless specified otherwise, the persistence manager accesses the field through get
and set methods, whose names are derived from the field name. For example, for a
field called lastName, the accessors String getName() and void setName(String) are
used. Collection fields require only a get method, except an array requires both a get
and a set method. If the accessors are specified through the get-method and set-
method attributes, the persistence manager accesses the field only through those
methods. The methods must be public and not static.

If the direct attribute is true, the field is accessed directly. The field must be public,
not static nor transient.

The type attribute indicates the type of the instance variable being mapped or the
type of each a collection’s elements. You can use fully qualified class names or a
short name, as Table 7-6 illustrates.

Table 7-6 Values for the type attribute of the field element for CMP beans

Short name Fully qualified name

other java.lang.Object

string java.lang.String

integer integer

long long

boolean boolean

double double

float float

big-decimal java.math.BigDecimal

byte byte

date java.util.Date

short short

char char

bytes byte[]

C H A P T E R 7

Configuration Reference

Elements of the Component-Managed Persistence Configuration File 109
  Apple Computer, Inc. November 2002

If the field is a collection, you specify the collection type through the collection
attribute and the type of each element of the collection through the type attribute.
Use the following table to determine the appropriate value for the collection
attribute.

The “Default implementation” column indicates the type used if the object holding
the collection is null and needs to be instantiated. For hashtable and map collections,
the persistence manager adds an object with the put(Object, Object) method: The
object added is both the key and the value.

Table 7-5 (page 107) describes the members of the field element.

chars char[]

strings string[]

locale java.lang.Locale

Table 7-7 Values for the collection attribute of the field element CMP beans

Collection attribute value Type of collection Default implementation

array <type>[] <type>[]

vector java.util.Vector java.util.Vector

hashtable java.util.Hashtable java.util.Hashtable

collection java.util.Collection java.util.Arraylist

set java.util.Set java.util.Hashset

map java.util.Map java.util.Hashmap

Table 7-6 Values for the type attribute of the field element for CMP beans

Short name Fully qualified name

110 Elements of the Component-Managed Persistence Configuration File
  Apple Computer, Inc. November 2002

C H A P T E R 7

Configuration Reference

key-generator element
This element specifies parameters for the key generator (if needed). For example, to
obtain sequential values from the table SEQTAB, use

<key-generator name="SEQUENCE">

<param name="table" value="SEQTAB">

<param name="global" value="0">

</key-generator>

<class key-generator="SEQUENCE">

...

</class>

If you have to use several key generators of the same type for the same data store,
use aliases:

<key-generator name="SEQUENCE" alias="seq1">

<param name="table" value="SEQTAB">

<param name="global" value="0">

</key-generator>

<key-generator name="SEQUENCE" alias="seq2">

<param name="table" value="SEQGLOBAL">

<param name="global" value="1">

</key-generator>

<class key-generator="seq2">

...

</class>

Table 7-8 describes the members of the key-generator element.

Table 7-8 Members of the key-generator element

Member Use Description

name Sequence-table name.

alias ? Additional identifier for the key generator.

<param> * See “param element” (page 113).

C H A P T E R 7

Configuration Reference

Elements of the Component-Managed Persistence Configuration File 111
  Apple Computer, Inc. November 2002

Table 7-9 lists the key-generator names supported in the persistence manager.

ldap element
This element contains field mapping information for fields mapped to LDAP
resources. Table 7-10 describes its members.

Table 7-9 Key-generator names supported in the persistence manager

Name Description

MAX MAX(pk) + 1 generic algorithm.

HIGH/LOW HIGH/LOW generic algorithm.

UUID UUID generic algorithm.

IDENTITY Supports auto-increase identity fields in Sybase ASE/ASA, MS SQL
Server, MySQL, and Hypersonic SQL.

SEQUENCE Supports the SEQUENCE algorithm in Oracle, PostgreSQL, Interbase,
and SAP DB.

Table 7-10 Members of the ldap element

Member Use Description

name ? LDAP-resource name.

112 Elements of the Component-Managed Persistence Configuration File
  Apple Computer, Inc. November 2002

C H A P T E R 7

Configuration Reference

map-to element
This element specifies the mapping between an enterprise bean and an SQL table.
Table 7-11 describes the element’s members.

mapping element
This element is the root element of the entire file. It defines a collection of class
mappings. Its members are described in Table 7-12.

Table 7-11 Members of the map-to element

Members Use Description

table ? SQL table name.

xml ?

ns-uri ?

ns-prefix ?

ldap-dn ?

ldap-oc ?

Table 7-12 Members of the mapping element

Member Use Description

<description> ? Optional description of the mapping.

<include> * Used to include other mappings in this mapping. The
tag’s sole member is the href attribute, set to the URL
that indicates the location of the mapping file.

<class> * See “class element” (page 105).

<key-generator> * See “key-generator element” (page 110).

C H A P T E R 7

Configuration Reference

Elements of the Component-Managed Persistence Configuration File 113
  Apple Computer, Inc. November 2002

param element
This element is used to provide named parameters to the containing element. Table
7-13 describes the members of this element.

sql element
This element provides field mapping information that is relevant only for fields
mapped to SQL tables. The type can be the proper Java-class type returned by the
JDBC driver or the SQL type without precision, for example,
"java.math.BigDecimal" or "numeric". However, the type could contain the
parameter for the SQL-to-Java type convertors in square brackets, for example,
"char[01]" for false=0, true=1 conversion from the boolean Java type to the char SQL
type.

Table 7-13 Members of the param element

Member Use Description

name Parameter name.

value Parameter value.

Table 7-14 Members of the sql element

Member Use Description

name ? Table-column name.

type ? SQL type of the column.

many-key ?

many-table ?

dirty ? Value: check or ignore. Default = "check".

114 Elements of the Transaction Manager Configuration File
  Apple Computer, Inc. November 2002

C H A P T E R 7

Configuration Reference

Elements of the Transaction Manager Configuration
File

The following sections describe the elements of the
TransactionManagerConfiguration.xml file.

config element
The config element provides the configuration for a JDBC data source. Table 7-15
describes its members.

Table 7-15 Data members of the config element

Member Use Description

<serverName> Server name.

<portNumber> Port number.

<databaseName> ? Database name.

<driverType> ? Driver type. Value: thin.

<user> User ID.

<password> Password.

C H A P T E R 7

Configuration Reference

Elements of the Transaction Manager Configuration File 115
  Apple Computer, Inc. November 2002

connector element
The connector element specifies a database-connection factory. Table 7-16 describes
its members.

dataSource element
The dataSource element contains a specification for a JDBC data source. Table 7-17
describes the members of this element.

Table 7-16 Members of the connector element

Member Use Description

<name> Connector name.

<jar> Connector JAR filename.

<paths> ? Paths to additional JAR and dependent files.

<config> ? See “config element” (page 114).

<limits> ? See “limits element” (page 116).

Table 7-17 Members of the dataSource element

Member Use Description

<name> Data-source name.

<jar> Data-source JAR filename.

<paths> ? Paths to additional JAR and dependent files.

<class> Class name of the data-source implementation.

<config> ? See “config element” (page 114).

<limits> ? See “limits element” (page 116).

116 Elements of the Transaction Manager Configuration File
  Apple Computer, Inc. November 2002

C H A P T E R 7

Configuration Reference

domain element
The domain element is the root tag of the entire file. Table 7-18 describes the members
of this element.

limits element
The limits element provides resource limits for a data source or a connector. Table
7-19 describes its members.

Table 7-18 Members of the domain element

Member Use Description

<name> Domain name.

<maximum> ? Maximum number of open transactions allowed.

<timeout> ? Default timeout (in seconds) for transactions.

<resources> ? See “resources element” (page 117).

Table 7-19 Data members of the limits element

Member Use Description

<maximum> ? Maximum number of connections allowed.

<minimum> ? Minimum number of connections allowed.

<initial> ? Initial pool size.

<maxRetain> ? Maximum period (in seconds) to retain open
connections.

<timeout> ? Maximum timeout (in seconds) to wait for a new
connection.

<trace> ? Turns tracing on ("true") or off ("false").

C H A P T E R 7

Configuration Reference

Elements of the Container Configuration File 117
  Apple Computer, Inc. November 2002

resources element
The resources element is the top-level tag of a list of JDBC data sources and JCA
connectors. Table 7-20 describes the members of this element.

Elements of the Container Configuration File

The DTD for the deployment configuration file, OpenEJBConfiguration.xml, is stored
in /System/Library/WebObjects/JavaApplications/OpenEJBTool.woa/Contents/
Resources. The DTD is also added to the Resources group of an enterprise-
bean–client application project. The file, called openejb_config.dtd, is shown in
Listing 7-2 . (You must never edit this file.)

Listing 7-2 DTD for OpenEJBConfiguration.xml

<?xml encoding="US-ASCII"?>

<!ELEMENT entity-bean (description?, display-name?, small-icon?,large-icon?, ejb-

deployment-id, home, remote, ejb-class, persistence-type, prim-key-class, reentrant, cmp-

field-name*, primkey-field?, jndi-enc?, security-role-ref*, query*)>

<!ELEMENT query (description?, method, query-statement)>

<!ELEMENT query-statement (#PCDATA)>

<!ELEMENT entity-container (class-name?, codebase?, description?, display-name?,

container-name, properties?, entity-bean+)>

<!ELEMENT codebase (#PCDATA)>

<!ELEMENT class-name (#PCDATA)>

Table 7-20 Members of the resources element

Member Use Description

<dataSource> * See “dataSource element” (page 115).

<connector> * See “connector element” (page 115).

118 Elements of the Container Configuration File
  Apple Computer, Inc. November 2002

C H A P T E R 7

Configuration Reference

<!ELEMENT cmp-field-name (#PCDATA)>

<!ELEMENT connection-manager (connection-manager-id, class-name,properties?)>

<!ELEMENT connectors (connector*, connection-manager+)>

<!ELEMENT connector (connector-id, connection-manager-id, managed-connection-factory)>

<!ELEMENT connector-id (#PCDATA)>

<!ELEMENT connection-manager-id (#PCDATA)>

<!ELEMENT containers (stateful-session-container|stateless-session-

container|entity-container)+>

<!ELEMENT container-name (#PCDATA)>

<!ELEMENT container-system (containers, security-role*, method-permission*, method-

transaction*)>

<!ELEMENT description (#PCDATA)>

<!ELEMENT display-name (#PCDATA)>

<!ELEMENT ejb-class (#PCDATA)>

<!ELEMENT ejb-deployment-id (#PCDATA)>

<!ELEMENT ejb-ref-name (#PCDATA)>

<!ELEMENT home (#PCDATA)>

<!ELEMENT env-entry (env-entry-name, env-entry-type, env-entry-value)>

<!ELEMENT env-entry-name (#PCDATA)>

<!ELEMENT env-entry-type (#PCDATA)>

<!ELEMENT env-entry-value (#PCDATA)>

<!ELEMENT facilities (intra-vm-server, remote-jndi-contexts?, connectors?, services)>

<!ELEMENT remote-jndi-contexts (jndi-context+)>

<!ELEMENT jndi-context (jndi-context-id, properties)>

<!ELEMENT jndi-context-id (#PCDATA)>

<!ELEMENT ejb-ref (ejb-ref-name, home, ejb-ref-location)>

<!ELEMENT ejb-ref-location (ejb-deployment-id | (remote-ref-name, jndi-context-id))>

<!ELEMENT remote-ref-name (#PCDATA)>

<!ELEMENT factory-class (#PCDATA)>

<!ELEMENT intra-vm-server (proxy-factory, codebase?, properties?)>

<!ELEMENT jndi-enc (env-entry*, ejb-ref*, resource-ref*)>

<!ELEMENT large-icon (#PCDATA)>

<!ELEMENT logical-role-name (#PCDATA)>

<!ELEMENT managed-connection-factory (class-name, properties?)>

<!ELEMENT method (description?, ejb-deployment-id?, method-intf?, method-name, method-

params?)>

<!ELEMENT method-intf (#PCDATA)>

<!ELEMENT method-name (#PCDATA)>

<!ELEMENT method-param (#PCDATA)>

<!ELEMENT method-params (method-param*)>

<!ELEMENT method-permission (description?, role-name+, method+)>

C H A P T E R 7

Configuration Reference

Elements of the Container Configuration File 119
  Apple Computer, Inc. November 2002

<!ELEMENT method-transaction (description?, method+, trans-attribute)>

<!ELEMENT openejb (container-system, facilities)>

<!ELEMENT persistence-type (#PCDATA) >

<!ELEMENT physical-role-name (#PCDATA)>

<!ELEMENT prim-key-class (#PCDATA)>

<!ELEMENT primkey-field (#PCDATA)>

<!ELEMENT properties (property+)>

<!ELEMENT property (property-name, property-value)>

<!ELEMENT property-name (#PCDATA)>

<!ELEMENT property-value (#PCDATA)>

<!ELEMENT proxy-factory (#PCDATA)>

<!ELEMENT reentrant (#PCDATA)>

<!ELEMENT role-mapping (logical-role-name+, physical-role-name+)>

<!ELEMENT role-name (#PCDATA)>

<!ELEMENT role-link (#PCDATA)>

<!ELEMENT remote (#PCDATA)>

<!ELEMENT res-auth (#PCDATA)>

<!ELEMENT res-id (#PCDATA)>

<!ELEMENT res-ref-name (#PCDATA)>

<!ELEMENT res-type (#PCDATA)>

<!ELEMENT resource-ref (description?, res-ref-name, res-type, res-auth, (res-id |

properties | connector-id))>

<!ELEMENT resource (description?, res-id, properties)>

<!ELEMENT security-role (description?, role-name)>

<!ELEMENT security-role-ref (description?, role-name, role-link)>

<!ELEMENT security-service (description?, display-name?, service-name, factory-class,

codebase?,properties?, role-mapping*)>

<!ELEMENT security-service-name (#PCDATA)>

<!ELEMENT services (security-service, transaction-service)>

<!ELEMENT service-name (#PCDATA)>

<!ELEMENT small-icon (#PCDATA)>

<!ELEMENT stateful-bean (description?, display-name?, small-icon?,large-icon?, ejb-

deployment-id, home, remote, ejb-class, transaction-type, jndi-enc?, security-role-

ref*)>

<!ELEMENT stateless-bean (description?, display-name?, small-icon?,large-icon?, ejb-

deployment-id, home, remote, ejb-class, transaction-type, jndi-enc?, security-role-

ref*)>

<!ELEMENT stateful-session-container (codebase?, description?, display-name?, container-

name, properties?, stateful-bean+)>

<!ELEMENT stateless-session-container (codebase?, description?, display-name?,

container-name, properties?, stateless-bean+)>

120 Elements of the Container Configuration File
  Apple Computer, Inc. November 2002

C H A P T E R 7

Configuration Reference

<!ELEMENT transaction-service (description?, display-name?, service-name, factory-class,

codebase?, properties?) >

<!ELEMENT transaction-service-name (#PCDATA)>

<!ELEMENT transaction-type (#PCDATA)>

<!ELEMENT trans-attribute (#PCDATA)>

The following sections describe the elements of the OpenEJBConfiguration.xml file.

connection-manager element
This element specifies a connection manager. Table 7-21 describes its members.

connector element
This element defines a connector. Table 7-22 describes its members.

Table 7-21 Members of the connection-manager element

Member Use Description

<connection-manager-id> Name of the connection manager.

<class-name> Class name of the data source.

<properties> Properties required by the data source.

Table 7-22 Members of the connector element

Member Use Description

<connector-id> Name of the connector.

<connection-manager-id> Specifies a connection manager. See
“connection-manager element” (page 120).

<managed-connection-factory> * See “managed-connection-factory element”
(page 127).

C H A P T E R 7

Configuration Reference

Elements of the Container Configuration File 121
  Apple Computer, Inc. November 2002

connectors element
This element encloses connectors or connection managers. Table 7-23 describes its
members.

container-system element
This element delimits the container configuration section of the deployment
configuration file. Table 7-24 describes its members.

Table 7-23 Members of the connectors element

Member Use Description

<connector> * See “connector element” (page 120).

<connection-manager> + See “connection-manager element” (page 120).

Table 7-24 Members of the container-system element

Member Use Description

<containers> See “dataSource element” (page 115).

<security-role> + See “connector element” (page 115).

<method-permission> + Assigns a logical role to methods of the enterprise
beans defined in the containers element.

<method-transaction> + Specifies a method’s transaction attribute.

122 Elements of the Container Configuration File
  Apple Computer, Inc. November 2002

C H A P T E R 7

Configuration Reference

containers element
This element encloses containers for the three types of enterprise beans: stateless
session beans, stateful session beans, and entity beans. Table 7-25 describes its
members.

ejb-ref element
This element defines a reference to a bean so that the bean can be accessed using
JNDI calls. Table 7-26 describes its members.

Table 7-25 Members of the containers element

Member Use Description

<stateful-session-container>
<stateless-session-container>
<entity-container>

+ At least one of these items must be
present.

Table 7-26 Members of the ejb-ref element

Member Use Description

<ejb-ref-name> JNDI name for the bean. For example, ejb/agent/
Agent.

<home> Home interface of the bean. For example,
webobjectsexamples.realestate.agent.AgentHome.

<ejb-ref-location> See “ejb-ref-location element” (page 123).

C H A P T E R 7

Configuration Reference

Elements of the Container Configuration File 123
  Apple Computer, Inc. November 2002

ejb-ref-location element
This element identifies a bean through its name (using its <ejb-deployment-id>
member) or through its remote interface and JNDI context ID. Table 7-27 describes
its members.

entity-bean element
This element defines an entity session bean. Table 7-28 describes its members.

Table 7-27 Members of the ejb-ref-location element

Member Use Description

<ejb-deployment-id>
or
(<remote-ref-name>,
<jndi-context-id>)

 Either <ejb-deployment-id> or <remote-ref-name>
and <jndi-context-id> must be specified.

Table 7-28 Members of the entity-bean element

Member Use Description

<description> ? Description for the bean.

<display-name> ?

<small-icon> ?

<large-icon> ?

<ejb-deployment-id> Name of the bean.

<home> Home interface (for example,
com.my.ejb.PersonHome).

<remote> Remote interface (for example, com.my.ejb.Person).

<ejb-class> Implementation class (for example,
com.my.ejb.PersonBean).

124 Elements of the Container Configuration File
  Apple Computer, Inc. November 2002

C H A P T E R 7

Configuration Reference

entity-container element
This element defines an entity-bean container and encloses the definition of entity
beans. Table 7-29 describes its members.

<persistence-type> Value: Container or Bean.

<prim-key-class> Fully qualified class name of the primary key.

<reentrant> Value: true or false. Should be false.

<cmp-field-name> * Container-managed–persistence field name.

<primkey-field> ? Primary-key field name.

<jndi-enc> ? See “jndi-enc element” (page 126).

<security-role-ref> * See “security-role-ref element” (page 136).

<query> * Specifies a query for a finder method.

Table 7-29 Members of the entity-container element

Member Use Description

<codebase> ?

<description> ? Description of the container.

<display-name> ?

<container-name> Name for the container.

<properties> ? Used to tell the container how to handle instances of
entity beans. See “properties element” (page 131).

<entity-bean> + Entity bean definitions. See “entity-bean element”
(page 123).

Table 7-28 Members of the entity-bean element

Member Use Description

C H A P T E R 7

Configuration Reference

Elements of the Container Configuration File 125
  Apple Computer, Inc. November 2002

env-entry element
This element defines an environment variable and its value (which can be accessed
by other beans through JNDI). Table 7-30 describes its members.

facilities element
This element specifies the runtime environment: proxy-generation attributes,
remote JNDI contexts, data-source connections, and J2EE services. You should not
change the information within <facilities> and </facilities> tags. Table 7-31
describes its members.

Table 7-30 Members of the env-entry element

Member Use Description

<env-entry-name> Name of the variable.

<env-entry-type> Java type of the variable.

<env-entry-value> Value for the variable.

Table 7-31 Members of the facilities element

Member Use Description

<intra-vm-server>

<remote-jndi-contexts> ?

<connectors> ?

<services>

126 Elements of the Container Configuration File
  Apple Computer, Inc. November 2002

C H A P T E R 7

Configuration Reference

jndi-context element
This element defines one external JNDI context to be used by the application. Table
7-32 describes its members.

jndi-enc element
This element encloses naming information so that this bean can be located through
JNDI. Table 7-33 describes the members of the jndi-enc element.

Table 7-32 Members of the jndi-context element

Member Use Description

<jndi-context-id> Name of the JNDI context.

<properties> Required properties.

Table 7-33 Members of the jndi-enc element

Member Use Description

<env-entry> *

<ejb-ref> * Defines a reference to this bean. See “ejb-ref
element” (page 122).

<resource-ref> * Defines the beans data source. See “resource-ref
element” (page 133).

C H A P T E R 7

Configuration Reference

Elements of the Container Configuration File 127
  Apple Computer, Inc. November 2002

intra-vm-server element
This element specifies the dynamic factory proxy to use to create client proxies of
the real EJB objects. Table 7-34 describes its member.

managed-connection-factory element
This element defines a managed-connection factory. Table 7-35 describes its
members.

Table 7-34 Member of the intra-vm-server element

Member Use Description

<proxy-factory> Dynamic proxy factory. Values:
org.openejb.util.proxy.jdk13.Jdk13ProxyFactory or
org.openejb.util.proxy.DynamicProxy.

Table 7-35 Members of the managed-connection-factory element

Member Use Description

<class-name> Class name of the data source.

<properties> ? Properties required by the data source.

128 Elements of the Container Configuration File
  Apple Computer, Inc. November 2002

C H A P T E R 7

Configuration Reference

method element
This element specifies a home or remote interface method of an enterprise bean.
Table 7-36 describes its members.

These examples of the three possible styles of the method element’s syntax:

� Referring to all the methods (home and remote interfaces) defined within the
<container-system> tag.

<method>

<method-name>*</method-name>

</method>

� Referring to a specific method defined within the <container-system> tag.

<method>

<method-name>METHOD</method-name>

</method>

Table 7-36 Members of the method element

Member Use Description

<description> ? Description for the method.

<ejb-deployment-id> ? Must specify the ID (name) of one of the enterprise
beans declared in the <container-system> tag. If this
element isn’t specified, this method declaration
applies to all matching bean methods (home and
remote interfaces) of all the enterprise beans defined
in the <container-system> tag.

<method-intf> ? Value: Home or Remote. Distinguishes between a
method with the same signature that is defined in
both the home and remote interface.

<method-name> Specifies the method name.

<method-params> ? Identifies a single method among multiple methods
with an overloaded method name. If the method
takes no input arguments, this element can be empty
or omitted.

C H A P T E R 7

Configuration Reference

Elements of the Container Configuration File 129
  Apple Computer, Inc. November 2002

� Referring to a single method within a set of methods (home and remote
interfaces) with an overloaded name.

<method>

<method-name>METHOD</method-name>

<method-params>

<method-param>PARAM-1</method-param>

<method-param>PARAM-2</method-param>

...

<method-param>PARAM-n</method-param>

</method-params>

</method>

method-params element
This element is used when further identification of a method is needed due to
method-name overloading. Table 7-37 describes its members.

Table 7-37 Members of the method-params element

Member Use Description

<method-param> * Fully qualified Java type. Specify arrays by following
the array element’s type with one or more pairs of
square brackets (for example, int[]).

130 Elements of the Container Configuration File
  Apple Computer, Inc. November 2002

C H A P T E R 7

Configuration Reference

method-permission element
This element maps security roles to methods. Table 7-38 describes its members.

method-transaction element
This element specifies how the container manages transaction scopes when
delegating a method invocation to an enterprise bean’s implementation class. Table
7-39 describes its members.

Table 7-38 Members of the method-permission element

Member Use Description

<description> ? Description for the method permission.

<role-name> + Logical role name corresponding to a <security-
role> tag.

<method> + See “method element” (page 128).

Table 7-39 Members of the method-transaction element

Member Use Description

<description> ? Description for the method and the transaction.

<method> + Methods to apply the transaction type to.

<trans-attribute> Value: NotSupported, Supports, Required, RequiresNew,
Mandatory, Never, or Bean.

C H A P T E R 7

Configuration Reference

Elements of the Container Configuration File 131
  Apple Computer, Inc. November 2002

openejb element
This is the root tag of the deployment configuration file. Table 7-40 describes its
members.

properties element
This element encloses a set of property-value definitions. Table 7-41 describes its
member.

property element
This element encloses a property-value definition. Table 7-42 describes its members.

Table 7-40 Members of the openejb element

Member Use Description

<container-system> See “container-system element” (page 121).

<facilities> See “facilities element” (page 125).

Table 7-41 Member of the properties element

Member Use Description

<property> See “property element” (page 131).

Table 7-42 Members of the property element

Member Use Description

<property-name> The name of the property.

<property-value> The value for the property.

132 Elements of the Container Configuration File
  Apple Computer, Inc. November 2002

C H A P T E R 7

Configuration Reference

query element
This element can be used to declare a query statement and bind it to a specific finder
method. The value can be retrieved using the
org.openejb.core.DeploymentInfo.getQuery method. Table 7-43 describes the
members of the query element.

remote-jndi-contexts element
This element groups external JNDI contexts. Table 7-44 describes its members.

Table 7-43 Members of the query element

Member Use Description

<description> ? Description for the query.

<method> The <ejb-deployment-id> tag of <method> is ignored
(should not be used). See “method element”
(page 128).

<query-statement> * SQL statement.

Table 7-44 Member of the remote-jndi-contexts element

Member Use Description

<jndi-context> + See “jndi-context element” (page 126).

C H A P T E R 7

Configuration Reference

Elements of the Container Configuration File 133
  Apple Computer, Inc. November 2002

resource element
This element defines a resource. Table 7-45 describes its members.

resource-ref element
This element specifies a reference to an external resource. Table 7-46 describes its
members.

Table 7-45 Member of the resource element

Member Use Description

<description> ? Description for the resource.

<res-id> Maps this resource to a <connector-id> element in
the corresponding <connectors> section.

<properties> See “properties element” (page 131).

Table 7-46 Members of the resource-ref element

Member Use Description

<description> ? Description for the resource.

<res-ref-name> Specifies the name of a resource manager
connection-factory reference (for example, comp/env/
jdbc/Employee).

134 Elements of the Container Configuration File
  Apple Computer, Inc. November 2002

C H A P T E R 7

Configuration Reference

This is an example of a <resource-ref> definition using properties:

<resource-ref>

 <res-ref-name>comp/env/jdbc/Employee</res-ref-name>

 <res-type>javax.sql.DataSource</res-type>

 <res-auth>Container</res-auth>

 <properties>

 <property>

 <property-name>url</property-name>

 <property-value>jdbc:odbc:orders</property-value>

 </property>

 <property>

 <property-name>username</property-name>

 <property-value>Admin</property-value>

 </property>

 <property>

 <property-name>password</property-name>

 <property-value></property-value>

 </property>

 </properties>

</resource-ref>

<res-type> Specifies the type of the data source, that is, the Java
class or interface expected to be implemented by the
data source (for example, javax.sql.DataSource).

<res-auth> Value: Application or Container. Specifies who signs
on to the resource manager: the enterprise bean or
the container.

<res-id> or
<connector-id> or
<properties>

 You can map this resource reference to a resource, a
connector, or to a set of properties.

Table 7-46 Members of the resource-ref element

Member Use Description

C H A P T E R 7

Configuration Reference

Elements of the Container Configuration File 135
  Apple Computer, Inc. November 2002

role-mapping element
This element maps a logical security role to a physical security role. Table 7-47
describes its members.

security-role element
This element defines a logical role name. Table 7-48 describes its members.

Table 7-47 Members of the role-mapping element

Member Use Description

<logical-role-name> + Logical security-role name.

<physical-role-name> + Physical security-role name.

Table 7-48 Members of the security-role element

Member Use Description

<description> ? Description of the logical role.

<role-name> Logical role name (for example, everyone or admin).

136 Elements of the Container Configuration File
  Apple Computer, Inc. November 2002

C H A P T E R 7

Configuration Reference

security-role-ref element
This element specifies a security-role reference. Table 7-49 describes its members

security-service element
This element defines a security service. Table 7-50 describes its members.

Table 7-49 Members of the security-role-ref element

Member Use Description

<description> ? Description of the security role.

<role-name> Security-role name used in code. It must be the
String used as the argument in the invocation of the
isCallerInRole(String) method of EJBContext.

<role-link> Name of a security role (<security-role> tag). Links
this security-role reference to a defined security role.
See “security-role element” (page 135).

Table 7-50 Members of the security-service element

Member Use Description

<description> ? Description of the service.

<display-name> ?

<service-name> ? Name of the service.

<factory-class> Name of the factory class for the service.

<codebase> ?

<properties> ? Properties needed by the service.

<role-mapping> + See “role-mapping element” (page 135).

C H A P T E R 7

Configuration Reference

Elements of the Container Configuration File 137
  Apple Computer, Inc. November 2002

services element
This element encloses services used by the container. Table 7-51 describes its
members.

stateful-bean element
This element defines a stateful session bean. Table 7-52 describes its members.

Table 7-51 Members of the services element

Member Use Description

<security-service> Description of the services.

<transaction-service> * See “transaction-service element” (page 140).

Table 7-52 Members of the stateful-bean element

Member Use Description

<description> ? Description for the bean.

<display-name> ?

<small-icon> ?

<large-icon> ?

<ejb-deployment-id> Name of the bean (for example, HelloBean).

<home> Home interface (for example, com.my.ejb.HelloHome).

<remote> Remote interface (for example, com.my.ejb.Hello).

<ejb-class> Implementation class (for example,
com.my.ejb.HelloBean).

138 Elements of the Container Configuration File
  Apple Computer, Inc. November 2002

C H A P T E R 7

Configuration Reference

stateful-session-container element
This element defines a stateful session bean container and encloses the definitions
of stateful session beans. Table 7-53 describes its members.

<transaction-type> Value: Container or Bean.

<jndi-enc> ? See “jndi-enc element” (page 126).

<security-role-ref> * See “security-role-ref element” (page 136).

Table 7-53 Members of the stateful-session-container element

Member Use Description

<codebase> ?

<description> ? Description of the container.

<display-name> ?

<container-name> Name for the container.

<properties> ? Used to tell the container how to handle instances of
stateful session beans. See “properties element”
(page 131).

<stateful-bean> + Stateful bean definitions. See “stateful-bean element”
(page 137).

Table 7-52 Members of the stateful-bean element

Member Use Description

C H A P T E R 7

Configuration Reference

Elements of the Container Configuration File 139
  Apple Computer, Inc. November 2002

stateless-bean element
This element defines a stateless session bean. Table 7-54 describes its members.

Table 7-54 Members of the stateless-bean element

Member Use Description

<description> ?

<display-name> ?

<small-icon> ?

<large-icon> ?

<ejb-deployment-id> Name of the bean.

<home> Home interface (for example, com.my.ejb.HelloHome).

<remote> Remote interface (for example, com.my.ejb.Hello).

<ejb-class> Implementation class (for example,
com.my.ejb.HelloBean).

<transaction-type> Value: Container or Bean.

<jndi-enc> ? See “jndi-enc element” (page 126).

<security-role-ref> * See “security-role-ref element” (page 136).

140 Elements of the Container Configuration File
  Apple Computer, Inc. November 2002

C H A P T E R 7

Configuration Reference

stateless-session-container element
This element defines a stateless session bean container and encloses the definitions
of stateless session beans. Table 7-55 describes its members.

transaction-service element
This element defines a transaction service. Table 7-56 describes its members.

Table 7-55 Members of the stateless-session-container element

Member Use Description

<codebase> ?

<description> ? Description of the container.

<display-name> ?

<container-name>

<properties> ? Used to tell the container how to handle instances of
stateless session beans. See “properties element”
(page 131).

<stateless-bean> + Stateless bean definitions. See “stateless-bean
element” (page 139).

Table 7-56 Members of the transaction-service element

Member Use Description

<description> ? Description of the transaction service.

<display-name> ?

<service-name> Name of the transaction service.

C H A P T E R 7

Configuration Reference

Elements of the Container Configuration File 141
  Apple Computer, Inc. November 2002

<factory-class> Name of the factory class for the service.

<codebase> ?

<properties> ? Properties needed by the service.

Table 7-56 Members of the transaction-service element

Member Use Description

142 Elements of the Container Configuration File
  Apple Computer, Inc. November 2002

C H A P T E R 7

Configuration Reference

143
  Apple Computer, Inc. November 2002

A P P E N D I X A

A Document Revision History

Table A-1 describes the revisions to Inside WebObjects: Enterprise JavaBeans.

Table A-1

Date Notes

October
2002

Revised for WebObjects 5.2.

Document name changed to Inside WebObjects: Enterprise JavaBeans.

Chapter 5, “Developing Bean Frameworks” (page 71), added information on
EOBeanBuilder usage.

Removed references to LocalTransactionConfiguration.xml file, as it not used in
WebObjects 5.2. See “Generating the EJB Configuration Files” (page 98) for more
information.

Added information on EJB-stub generation (“Generating EJB Stubs” (page 76)).

Added information on EJB transport (“Communication Transport Between Bean
Clients and Containers” (page 98)).

Added information on EJB-container logging (“EJB Container Operation
Logging” (page 99)).

January
2002

Reorganized Chapter 7, “Configuration Reference” (page 101), in alphabetical
order.

Added index and glossary.

December
2001

Document published as Inside WebObjects: Developing EJB Applications.

144
  Apple Computer, Inc. November 2002

A P P E N D I X A

Document Revision History

145
  Apple Computer, Inc. November 2002

8 Glossary

bean class The bean class implements the
methods defined in an enterprise bean’s
business methods, which are defined in the
remote interface.

bean client An application or enterprise
bean that makes use of an enterprise bean.

deployment descriptor XML file that
describes the configuration of a Web
application. It’s located in the WEB-INF
directory of the application’s WAR file and
named web.xml. See also WAR.

EJB (Enterprise JavaBeans) Specification
that provides an infrastructure through
which data-based components can be
developed and deployed in a variety of
platforms.

J2EE (Java 2 Platform, Enterprise
Edition) Specification that define a
platform for the development and
deployment of Web applications. It defines
an environment under which enterprise
beans, servlets, and JSP pages can share
resources and work together.

home interface The home interface defines
an enterprise bean’s life-cycle methods, used
to create, remove, and find beans.

ORB (Object Request Broker) Facility
through which a client application can locate
and use distributed objects.

remote interface The remote interface
defines an enterprise bean’s business
methods, which are used by its clients to
interact with the bean.

Web application, Web app File structure
that contains servlets, JSP pages, HTML
documents and other resources. This
structure can be deployed on any servlet-
enabled HTTP server. See also servlet
container.

G L O S S A R Y

146
  Apple Computer, Inc. November 2002

147

Index

A, B

bean class 18
bean clients 17
bean frameworks

creating
in Mac OS X 22–30
in Windows 38–39, 73–74

deploying 19
developing 21–44, 45–68

bean proxy, creating a 32, 41
bean source files, working with 71–72
bean-client applications

adding bean frameworks 40
configuring 79–97

bean persistence 53–54
data stores 81
EJB Containers 82

creating
in Mac OS X 30–37
in Windows 39–44

grouping beans 83
BMP 50, 60

C

CMP 50, 83
CMPConfiguration.xml file 80, 84, 102
containers, EJB

external 20, 96
internal 19
iPlanet 96
OpenEJB 18, 96
responsibilities 18
Web Logic 97
WebSphere 97

D

DAO 50, 68
data stores, defining local and global 92
databases

grouping beans in the EJB-container
configuration file 83

primary-key–generator algorithms
Interbase 91
Oracle 92
PostgreSQL 91

supported servers 86
deployment descriptor file 18, 28

E, F

EJB (Enterprise JavaBeans) 13
EJB Client Interfaces target 29
EJB Deployment target 28
EJB vendors 21
ejbFindAll method 50
ejb-jar.xml file 28, 50
elements
bind-xml 104
cache-type 105
class 105
config 114
connection-manager 120
connector 115, 120
connectors 121
containers 122
container-system 121
dataSource 115
domain 116
ejb-ref 122
ejb-ref-location 123
entity-bean 123

I N D E X

148

elements (continued)
entity-container 124
env-entry 125
facilities 125
field 107
intra-vm-server 127
jndi-context 126
jndi-enc 126
key-generator 110
ldap 111
limits 116
managed-connection-factory 127
mapping 112
map-to 112
method 128
method-params 129
method-permission 94, 130
method-transaction 94, 130
openejb 131
param 113
properties 131
query 132
resource 133
resource-ref 133
resources 117
role-mapping 135
security-role 94, 135
security-role-ref 136
services 137
sql 113
stateful-bean 137
stateful-session-container 138
stateless-bean 139
stateless-session-container 140
transaction-service 140

enterprise beans
See also bean frameworks
EJB vendors 21
mapping to data stores 87–92

enterprise objects and bean-client applications
31

entity beans 18
EOBeanAssistant 45, 46

G

GlobalTransactionConfiguration.xml file 80,
84

greeting instance variable 35, 43

H

Hello.java file 30, 39
Hello_Client project 30
HelloBean project 22, 38
HelloBean_Client project 40
home interface 18, 25, 49

I

Interbase database, primary-key–generator
algorithm for 91

iPlanet EJB container 96

J, K, L,

J2EE (Java 2 Platform, Enterprise Edition) 13
JavaMail 80, 82
JDBC 50
JNDI 50

M, N

Main.java file 35, 43
mapping beans to data stores 87–92

See also primary-key–generator algorithms
mapping files 87
primary keys 88

message method 30, 35, 43

I N D E X

149

O

OpenEJB EJB container 96
openejb_config.dtd file 117
OpenEJBConfiguration.xml file 80, 93, 117
OpenEJBTool 40, 98
Oracle database, SEQUENCE

primary-key–generator algorithm for 92
ORB (Object Request Broker), OpenORB 19

P, Q

package 49
persistence manager

Castor JDO 19, 86
configuring 86

Person project 46–51
Person_Client project 51–60
PostgreSQL

SEQUENCE primary-key–generator algorithm
91

primary-key class 50
primary-key–generator algorithms 88–92

See also elements
key-generator

HIGH/LOW 89
IDENTITY 90
MAX 88
SEQUENCE 91
UUID 90

R

remote interface 18, 26, 49

S

session beans, stateful and stateless 18
Session.java file, creating a bean proxy in 32,

41

T, U, V

transaction manager
configuring

See also data stores, local and global
local and global configuration files 83
summary 85

Tyrex 19
TransactionManagerConfiguration.xml file

configuring the EJB container in a bean-client
application 36

description of XML tags 114
example 85
purpose 80

W. X, Y, Z

Web Logic EJB container 97
WebSphere EJB container 97

I N D E X

150

	Enterprise JavaBeans
	Contents
	Figures, Listings, and Tables
	About This Document
	Introduction to Enterprise JavaBeans
	Enterprise JavaBeans
	Enterprise JavaBeans in WebObjects

	Developing Session Beans
	Developing a Session Bean in Mac OS X
	Creating the Bean Framework
	Analyzing the Hello Bean’s Files
	Adding Business Logic to the Bean
	Building the Bean Framework
	Creating the Client Application
	Adding Business Logic to the Client Application
	Modify Session.java
	Modify Main.wo
	Modify Main.java

	Configuring the Container
	Running the Hello_Client Application

	Developing a Session Bean in Windows
	Creating the Bean Framework
	Adding Business Logic to the Bean
	Building the Framework
	Creating the Client Application Project
	Adding the Hello Bean Framework to the Hello_Client Project
	Creating the Container Configuration Files
	Adding Business Logic to the Client Application
	Modify Session.java
	Modify Main.wo
	Modify Main.java

	Configuring the Container
	Running the Hello_Client Application

	Developing Entity Beans
	Developing an Entity Bean From a Data Model
	Creating an Empty Bean Framework
	Generating Enterprise-Bean Source Files From a Model File Using EOBeanAssistant

	Using an Entity-Bean Framework
	Developing the Application Project
	Defining Data Sources
	Mapping Enterprise Beans to Data-Store Tables
	Configuring the Transaction Manager
	Creating, Retrieving, and Removing Person Beans

	Advanced Entity-Bean Development
	Bean-Managed Persistence
	Data Access Objects

	Developing Bean Frameworks
	Adding Source Files to a Bean- Framework Project
	Adding JAR Files to a Bean Framework Project
	Creating Frameworks From Bean JAR Files in Windows
	Adding CMP Fields to an EJB Deployment Descriptor
	Generating EJB Stubs

	Configuring Applications
	Configuration Overview
	Configuring the Transaction Manager
	Configuring the EJB Container
	Configuring the Persistence Manager
	GlobalTransactionConfiguration.xml
	CMPConfiguration.xml

	Transaction Manager Configuration
	Persistence Manager Configuration
	Mapping Enterprise Beans to Data-Store Tables
	The Mapping File
	Primary Keys

	Defining Data Sources

	Container Configuration
	Containers Section
	Facilities Section

	Using External Containers
	Communication Transport Between Bean Clients and Containers
	Generating the EJB Configuration Files
	EJB Container Operation Logging

	Configuration Reference
	Elements of the Component-Managed Persistence Configuration File
	bind-xml element
	cache-type element
	class element
	field element
	key-generator element
	ldap element
	map-to element
	mapping element
	param element
	sql element

	Elements of the Transaction Manager Configuration File
	config element
	connector element
	dataSource element
	domain element
	limits element
	resources element

	Elements of the Container Configuration File
	connection-manager element
	connector element
	connectors element
	container-system element
	containers element
	ejb-ref element
	ejb-ref-location element
	entity-bean element
	entity-container element
	env-entry element
	facilities element
	jndi-context element
	jndi-enc element
	intra-vm-server element
	managed-connection-factory element
	method element
	method-params element
	method-permission element
	method-transaction element
	openejb element
	properties element
	property element
	query element element
	remote-jndi-contexts element
	resource element
	resource-ref element
	role-mapping element
	security-role element
	security-role-ref element
	security-service element
	services element
	stateful-bean element
	stateful-session-container element
	stateless-bean element
	stateless-session-container element
	transaction-service element

	Document Revision History
	Glossary
	Index

