

I n s i d e W e b O b j e c t s

Developing WebObjects
Applications With Direct to Web

Preliminary

November 2002



 Apple Computer, Inc.
© 2001 Apple Computer, Inc.
All rights reserved.
No part of this publication may be
reproduced, stored in a retrieval
system, or transmitted, in any form or
by any means, mechanical, electronic,
photocopying, recording, or
otherwise, without prior written
permission of Apple Computer, Inc.,
with the following exceptions: Any
person is hereby authorized to store
documentation on a single computer
for personal use only and to print
copies of documentation for personal
use provided that the documentation
contains Apple’s copyright notice.
The Apple logo is a trademark of
Apple Computer, Inc.
Use of the “keyboard” Apple logo
(Option-Shift-K) for commercial
purposes without the prior written
consent of Apple may constitute
trademark infringement and unfair
competition in violation of federal
and state laws.
No licenses, express or implied, are
granted with respect to any of the
technology described in this book.
Apple retains all intellectual property
rights associated with the technology
described in this book. This book is
intended to assist application
developers to develop applications
only for Apple-labeled or
Apple-licensed computers.
Every effort has been made to ensure
that the information in this document
is accurate. Apple is not responsible
for typographical errors.
Apple Computer, Inc.
1 Infinite Loop
Cupertino, CA 95014
408-996-1010
Apple, the Apple logo, Cocoa, Mac,
Macintosh, and WebObjects are
trademarks of Apple Computer, Inc.,
registered in the United States and
other countries.

Enterprise Objects and Enterprise
Objects Framework are trademarks of
NeXT Software, Inc., registered in the
United States and other countries.
Java is a registered trademark of Sun
Microsystems, Inc. in the United
States and other countries.
Simultaneously published in the
United States and Canada.

Even though Apple has reviewed this
manual, APPLE MAKES NO
WARRANTY OR REPRESENTATION,
EITHER EXPRESS OR IMPLIED, WITH
RESPECT TO THIS MANUAL, ITS
QUALITY, ACCURACY,
MERCHANTABILITY, OR FITNESS
FOR A PARTICULAR PURPOSE. AS A
RESULT, THIS MANUAL IS SOLD “AS
IS,” AND YOU, THE PURCHASER, ARE
ASSUMING THE ENTIRE RISK AS TO
ITS QUALITY AND ACCURACY.

IN NO EVENT WILL APPLE BE LIABLE
FOR DIRECT, INDIRECT, SPECIAL,
INCIDENTAL, OR CONSEQUENTIAL
DAMAGES RESULTING FROM ANY
DEFECT OR INACCURACY IN THIS
MANUAL, even if advised of the
possibility of such damages.

THE WARRANTY AND REMEDIES SET
FORTH ABOVE ARE EXCLUSIVE AND
IN LIEU OF ALL OTHERS, ORAL OR
WRITTEN, EXPRESS OR IMPLIED. No
Apple dealer, agent, or employee is
authorized to make any modification,
extension, or addition to this warranty.

Some states do not allow the exclusion or
limitation of implied warranties or
liability for incidental or consequential
damages, so the above limitation or
exclusion may not apply to you. This
warranty gives you specific legal rights,
and you may also have other rights which
vary from state to state.

3

Preliminary



 Apple Computer, Inc. November 2002

Contents

Figures, Listings, and Tables 7

Chapter 1

Introduction

9

About This Book 9

Chapter 2

An Introduction to Direct To Web

11

Creating a Direct to Web Project 12
The Different Looks for WebObjects Applications 14

The Structure of a Direct to Web Project 17
Using Your Direct to Web Application 18

Launching a Direct to Web Application 19
The Login Page 20
Dynamically Generated Pages 21

Query Pages 22
List Pages and Select Components 25
Inspect and Edit Pages 27
Edit-Relationship Pages 29
Master-Detail Pages 31

Customizing Your Application With the WebAssistant 33
Running the WebAssistant With appletviewer 33
WebAssistant Overview 34
Restricting Access to Entities 36
Customizing Pages 37
Setting Which Properties are Displayed 38
Changing How Properties Are Displayed 39

Textual Attributes and Formatting 40
Representation of Relationships 41

WebAssistant Expert Mode 44
Choosing a Page to Customize 45
Named Configurations 46

4

Preliminary



 Apple Computer, Inc. November 2002

C O N T E N T S

Generating Components 47
User Templates 51

Generating a Template 51

Chapter 3

Direct to Web Architecture

53

Direct to Web Components 54
Direct to Web Templates 55
Direct to Web Reusable Components 56
Property-Level Components 58
Direct to Web Component Organization 59
The Direct to Web Context 61

Maintaining State 61
Providing Binding Values 61

Resolving Keys With the State Dictionary 62
Resolving Keys With the Application Configuration 63
Resolving Derived Values 64

The Direct to Web Factory 64
Rendering a Direct to Web Page: An Example 64

Creating the Query Page 64
Rendering the Direct to Web Template 66
Setting the Property Key 68
Resolving Keys That Depend on the Property 69
The Rule System 70

Deciding Which Candidate Should Fire 71
Rules and the Web Assistant 72
Rule Firing Cache 73

Caching Gotchas 74

Chapter 4

Customizing a Direct to Web Application

77

Adding a Logo to Your Direct to Web Pages 77
Using Direct to Web in Other WebObjects Applications 78

Embedding Direct to Web Components 78

C O N T E N T S

5

Preliminary



 Apple Computer, Inc. November 2002

Linking to a Direct to Web Page 80
Implementing the Action Method 81
Setting Up a Next-Page Delegate 82
Setting Up the Page Wrapper 84

Modifying the Direct to Web Factory 85
Creating a Custom Property-Level Component 86

Specifying the Custom Component 86
Using the Custom Component With Direct to Web 87

Modifying a Direct to Web Template 88
Freezing Your Modified Direct to Web Template 90

Adding a New Direct to Web Task to Your Application 90
Creating the Direct to Web Template 91
Adding Rules to Define the Default Behavior 93

Modifying the Web Assistant Rules 94
Adding New Default Rules 94

Adding a Hyperlink to the New Task Page 96
Adding Authentication to the Main Component 98

Hooking Up the Main Component 99
Add Logic 100
Add Better Logic 103

Appendix A

EditStatePopup Listings

105

EditStatePopup.html 105
EditStatePopup.wod 105
EditStatePopup.java 105

Index

109

6

Preliminary



 Apple Computer, Inc. November 2002

C O N T E N T S

7

Preliminary



 Apple Computer, Inc. November 2002

Figures, Listings, and Tables

Chapter 2

An Introduction to Direct To Web

11

Figure 2-1 Header controls 22
Listing 2-1 QueryMovieRole.java generated by the Web Assistant 49

Chapter 3

Direct to Web Architecture

53

Figure 3-1 Edit page component organization 59
Figure 3-2 Master-detail page component organization 60
Figure 3-3 Direct to Web Architecture 63
Listing 3-1 Bindings file for a Direct to Web template 62
Listing 3-2 D2WQueryAllEntitiesPage.showReqularQueryAction 65
Listing 3-3 Rules used to resolve the pageName key 65
Listing 3-4 BASQueryPage.html excerpts 67
Listing 3-5 BASQueryPage.wod excerpts 67
Table 3-1 Direct to Web tasks 54
Table 3-2 Direct to Web Templates 55
Table 3-3 Reusable components 57
Table 3-4 Direct to Web templates and reusable components 57
Table 3-5 Number property-level components (java.lang.Number,

java.math.BigDecimal) 58
Table 3-6 Initial Direct to Web context dictionary 65
Table 3-7 Direct to Web context dictionary after setting propertyKey 69
Table 3-8 Example of Cached Rule 74
Table 3-9 Example of Cached Rule First Time it Fires 75
Table 3-10 Cached Rule for Real Estate Agent Login 76

Chapter 4

Customizing a Direct to Web Application

77

Figure 4-1 Default Main component 98
Figure 4-2 Add the login action 99
Figure 4-3 Dragging from the action method to the Login button 100

8

Preliminary



 Apple Computer, Inc. November 2002

F I G U R E S , L I S T I N G S , A N D T A B L E S

Listing 4-1 Sample code that sets up a next-page delegate 82
Listing 4-2 PageWrapper.html example 84
Listing 4-3 PageWrapper.wod example 84
Listing 4-4 Customizing the D2W class 85
Listing 4-5 Setting Rules With Rule Editor 88
Listing 4-6 Implementation of the saveChanges method in

NEUEditListPage.java 92
Listing 4-7 Implementation of the editList method in NEUListPage2.java 97

About This Book

9

Preliminary



 Apple Computer, Inc. November 2002

C H A P T E R 1

1 Introduction

The Direct to Web framework is a configurable system for creating WebObjects
applications that access a database. All Direct to Web needs to create the application
is a model for the database, which you can build using EOModeler.

This application is not a set of static web pages. Instead, Direct to Web uses
information from the model at runtime to dynamically generate the pages.
Consequently, you can modify your application’s configuration at runtime using
the Direct to Web Assistant (WebAssistant for short). You can hide entities, hide
their properties, reorder the properties, and change the way they are displayed
without recompiling or relaunching the application.

About This Book

This book provides an introduction to Direct to Web and then describes the
concepts you’ll need to know when you customize a Direct to Web application.

To help you find what you are looking for, this book is divided into three remaining
chapters:

“An Introduction to Direct To Web” (page 11) shows how to build a Direct to Web
project and perform simple customization tasks on it.

“Direct to Web Architecture” (page 53) describes the components and classes
involved in generating Direct to Web pages.

10

About This Book

Preliminary



 Apple Computer, Inc. November 2002

C H A P T E R 1

Introduction

“Customizing a Direct to Web Application” (page 77) discusses several ways to
customize the behavior of a Direct to Web application and presents three full
examples:

�

a property-level component that edits dates using pop-up lists

�

a new task page called an edit-list page that edits several objects at a time.

�

adding authentication to a Direct to Web application.

The first topic is suitable for a WebObjects beginner. The last two topics are
intended for a programmer who is already familiar with WebObjects, specifically
entity-relationship modeling and the WebObjects request-response cycle. For more
information about entity-relationship modeling, see

Enterprise Objects

. For more
information about the WebObjects request-response cycle, see

Developing Web
Applications

.

11

Preliminary



 Apple Computer, Inc. November 2002

C H A P T E R 2

2 An Introduction to Direct To Web

Direct to Web is a Java-based technology that provides a quick and easy method to
create a web application that accesses a database. It lets you experiment and
prototype, while also allowing you the flexibility to access the full power of
WebObjects.

There are several stages you can go through, depending on your needs:

�

First, you create a WebObjects project and specify a

model

to use. Direct to Web
uses the model, which defines the mapping between your database and
enterprise object classes, to generate an application that provides an interface to
your database. This application consists of a set of pages that allow you to do
queries on the entities in your database, display results, and add and delete
records.

A complete model file that correctly defines all the relationships is the key to
creating a WebObjects application with Direct to Web.

�

To change the way the pages are presented, you can use the WebAssistant,
which is a Java applet that runs in your web browser. For each page in your
application, the WebAssistant allows you to specify which page is shown, which
properties are shown on the page, how these properties are displayed, and the
order in which they are listed. You can experiment with different configurations
until you are satisfied, without writing any code.

�

If you want to customize beyond what the WebAssistant provides, you can
“freeze” any or all of the pages in your application as WebObjects components.
This gives you the full power of WebObjects: you can modify a component’s
layout using WebObjects Builder, and you can customize its behavior by writing
Java code using Project Builder.

12

Creating a Direct to Web Project

Preliminary



 Apple Computer, Inc. November 2002

C H A P T E R 2

An Introduction to Direct To Web

�

You can also modify the templates that Direct to Web uses to generate its pages.
These templates are WebObjects components that you can edit with WebObjects
Builder. This way you can modify the “look” or style of the pages that Direct to
Web generates.

You can also use Direct to Web in other types of WebObjects applications. Your
application can take two approaches:

�

embedding Direct to Web components in your pages; these include query forms,
lists, or edit/inspect forms

�

linking to dynamically generated Direct to Web pages

This chapter describes the elements that make up a Direct to Web application and
shows you the steps you follow when creating and modifying an application. If you
find that your application needs some specific behavior that Direct to Web does not
provide, see “Customizing a Direct to Web Application” (page 77). For more
information on using Project Builder, see Project Builder Help. For more
information about using Project Builder and WebObjects Builder to develop
WebObjects applications, see

Developing Web Applications

. For more information
about using WebObjects with database applications, see

Enterprise Objects

 as well as

Using EOModeler

.

Creating a Direct to Web Project

To create a Direct to Web application, begin by using Project Builder to create a
WebObjects application project. Follow these steps:

1. Launch Project Builder.

2. Choose File > New Project.

3. Select WebObjects/Direct to Web Application.

4. Set the name and location of your project.

Enter

D2WTutorial

 in the Project Name field.

Click Set and select a location for your project.

5. Click Next in the “Enable J2EE Integration” window.

C H A P T E R 2

An Introduction to Direct To Web

Creating a Direct to Web Project

13

Preliminary



 Apple Computer, Inc. November 2002

6. Click Next in the “Enable Web Services” window.

7. In the “Choose EOAdaptors” window, make sure

JavaJDBCAdaptor

 is selected.

Click Next.

8. Add additional frameworks to the project.

No additional frameworks are required for this tutorial, so click Next.

9. Choose a model file.

You’ll use one of the models defined in the sample projects.

Click Add.

Navigate to the

/Developer/Examples/JavaWebObjects/Frameworks/

JavaRealEstate

 directory.

Select

RealEstate.eomodeld

 and click Choose.

Click Next.

10. Select a look for the user-interface.

This pane offers a selection of user-interface styles (“looks”) for your Direct to
Web application; see “The Different Looks for WebObjects Applications”
(page 14) for more information.

Select Basic Look from the Direct To Web Looks list and click Next.

11. Build and launch the project.

This pane asks if you would like to build and launch your application
immediately. If you choose not to have the wizard build and launch your
application, see “Using Your Direct to Web Application” (page 18), which tells
you how to launch your WebObjects application and describes what you see
when you launch it. For information about building a project, see

Developing Web
Applications

.

For the purposes of this tutorial, make sure “Build and launch project now” is
selected and click Finish.

14

Creating a Direct to Web Project

Preliminary



 Apple Computer, Inc. November 2002

C H A P T E R 2

An Introduction to Direct To Web

The Different Looks for WebObjects Applications

In this release, Direct to Web offers three different user-interface styles, or looks, for
WebObjects applications: Basic, Neutral, and WebObjects. Currently the only
simple way to change the look of an application is to re-create a project using Project
Builder. Therefore it is advisable to know which look you want in advance.

All the looks provide the same functions for the user. They only differ in the style
and placement of their user-interface elements.The Neutral look and the
WebObjects look are very similar but the Neutral look does not display the Apple
logo, which makes it easier if you want to use your own logo.

The login page for the Basic look has a panel-like submit form for the entry of user
name and password:

The login page for the Neutral look is much simpler:

This is the login page for the WebObjects look:

C H A P T E R 2

An Introduction to Direct To Web

Creating a Direct to Web Project

15

Preliminary



 Apple Computer, Inc. November 2002

In the dynamically-generated pages (query, list, inspect, and so on), the Basic look
differs from the Neutral and WebObjects looks even more strikingly. In the Basic
look the control header runs across the top of the page whereas in the Neutral and
WebObjects looks it appears on the left side of the page. In addition, the Basic look
is more tabular while the Neutral and WebObjects looks tends to present records in
visual “blocks.” For example, the following is an example of a list page in the Basic
look:

16

Creating a Direct to Web Project

Preliminary



 Apple Computer, Inc. November 2002

C H A P T E R 2

An Introduction to Direct To Web

The list page in the Neutral look appears like this:

The following illustrates what a list page looks like in the WebObjects look:

C H A P T E R 2

An Introduction to Direct To Web

The Structure of a Direct to Web Project

17

Preliminary



 Apple Computer, Inc. November 2002

The Structure of a Direct to Web Project

A Direct to Web project has a structure similar to other WebObjects application
projects. A newly created project contains three components, each enclosed in a
subgroup, which you can access if you disclose the contents of the Web
Components group in the Groups & Files list in Project Builder’s main window.

�

MenuHeader.wo

 is a reusable component that contains the header with the control
buttons on the left side of each page (or the top of the page in the Basic look.) You
can add text or other elements to this component if you choose.

�

Main.wo

 is the main component, representing the login page of the application.

18

Using Your Direct to Web Application

Preliminary



 Apple Computer, Inc. November 2002

C H A P T E R 2

An Introduction to Direct To Web

�

PageWrapper.wo

 is a reusable component that wraps the content of the pages of
the application (except for

Main.wo

). It contains a header, the menu header
component (

MenuHeader.wo

), and footer text and elements common to these
pages. If you want to customize the headers and footers for all pages of your
application, you can add text or other elements to this component.

You can add code to the

.java

 files corresponding to each component to extend their
functionality. See the WebObjects API Reference for more information on the Direct
to Web API.

Each of the subgroups that contains a component also holds the component’s

.api

file. This file specifies the exported keys, both optional and required, for each
component.

As you run your application, Direct to Web creates additional pages, using
information in your model file and the settings specified in the WebAssistant. These
pages do not show up as components in your project. Rather, Direct to Web creates
them dynamically using a set of reusable components in the Direct to Web
framework. However, you can generate components or user templates. When you
do that, you can modify the resulting components just as you would with any other
WebObjects components. See “Generating Components” (page 47) and “User
Templates” (page 51) for more information.

The Resources group contains the model file you specified when you created the
project (in this example,

RealEstate.eomodeld

). It also contains

user.d2wmodel

,
which stores the preferences you have specified using the WebAssistant. Advanced
users can edit this file; see “The Rule System” (page 70) for more information about
the rule file.

Using Your Direct to Web Application

Once you have created a Direct to Web application using Project Builder and the
WebObjects application wizard, and have compiled the resulting project files, you
can launch the application by clicking Build and Run in Project Builder’s toolbar .
The application pages are displayed in a web browser, where you can test the
application’s presentation of data and, with the WebAssistant enabled, modify the
layout of that data.

C H A P T E R 2

An Introduction to Direct To Web

Using Your Direct to Web Application

19

Preliminary



 Apple Computer, Inc. November 2002

Launching a Direct to Web Application

To launch your application from Project Builder, click in the toolbar in Project
Builder’s main window.

Before you launch the application you might want to set some command line
options. For example, when running a Direct to Web Application for deployment,
you should turn on caching and disable the WebAssistant (to prevent anyone from
connecting to the application using WebAssistant). To do this, set the

-WOCachingEnabled

 and

-D2WWebAssistantEnabled

 options, respectively:

1. Under the Project menu choose “Edit Active Executable”.

2. Under the Launch Arguments listing in the content pane, click the “plus” icon.

3. Enter

-WOCachingEnabled YES -D2WWebAssistantEnabled NO in the new entry that
was created.

20 Using Your Direct to Web Application
Preliminary  Apple Computer, Inc. November 2002

C H A P T E R 2

An Introduction to Direct To Web

For other command-line options for WebObjects applications, such as
-WOPort, see Deploying WebObjects Applications.

You can test the Direct to Web application using a web browser on a machine
remote from the machine on which the application is running (that is, the server).
When you launch the application, look in the console output, which is displayed in
the Launch panel, for the line containing application’s URL.

Welcome to D2WTutorial!

Opening application’s URL in browser:

http://localhost:1234/cgi-bin/WebObjects/D2WTutorial.woa

Enter the URL in your browser, after substituting the host name of the server
machine for “localhost”. In fact, you can exclude every thing in the URL after the
application port number. For example, if the server host name is “foobar” you
would enter the following URL in the browser to load the WebObjects application:

http://foobar:1234/

The Login Page
When you launch your application, your web browser displays the Direct to Web
login screen:

The login page is the default implementation of your Main component, Main.wo. It
contains text fields to enter a name and password, as well as a submit button (Login)
and an Enable Assistant checkbox. To go to the application’s default first page,
select Enable Assistant and click Login button. You don’t need to enter a name and

C H A P T E R 2

An Introduction to Direct To Web

Using Your Direct to Web Application 21
Preliminary  Apple Computer, Inc. November 2002

password, because the default application provides no password-checking logic. If
you don’t select Enable Assistant before clicking Login, you won’t have access to the
WebAssistant.

You can modify the login page (Main.wo) to provide any behavior or appearance you
like. For example, you can add your own password-checking logic, as shown in the
section “Adding Authentication to the Main Component” (page 98).

Dynamically Generated Pages
Besides the login page, there are nine types of dynamically-generated pages (or
reusable components) in a Direct to Web application:

� A query-all page that displays all entities that are currently exposed and lets
users construct queries on the attributes (but not the relationships) of those
entities; see “Query Pages” (page 22). The properties of this page cannot be
customized.

� A query page that allows the user to construct a query for a particular entity; see
“Query Pages” (page 22).

� A list page that displays one or more records of a particular entity in tabular
form. List pages and select components are implemented with the same
components; see “List Pages and Select Components” (page 25). The result of a
query is always a list page.

� An inspect page that displays a single record of a given entity. Inspect pages and
edit pages are implemented with the same components; see “Inspect and Edit
Pages” (page 27).

� An edit page that displays a single record of a given entity and also allows you
to make changes to the record and save it to the database. Edit and inspect pages
are implemented with the same components; see “Inspect and Edit Pages”
(page 27).

� A select component that lets users select a record from a list, thereby adding it
to a relationship or populating an edit component with it. List pages and select
components are implemented with the same components; see “List Pages and
Select Components” (page 25).

� A confirm page that prompts users to confirm that they want to delete records.
The properties of this page cannot be customized.

22 Using Your Direct to Web Application
Preliminary  Apple Computer, Inc. November 2002

C H A P T E R 2

An Introduction to Direct To Web

� An edit-relationship page is a multiple component page for removing and
adding objects to a relationship. See “Edit-Relationship Pages” (page 29).

� An error page for displaying information related to exceptions and other errors.
The properties of this page cannot be customized.

All pages in your application contain the standard Direct to Web header (defined in
MenuHeader.wo) at the top of the page. This header provides a number of controls,
shown in Figure 2-1.

Figure 2-1 Header controls

For best results when navigating through a Direct to Web application, don’t use
your web browser’s backtrack buttons. Instead:

� To return to the previous page from an edit or inspect page, click Cancel.

� To return to a query page from a list page, click Return.

Query Pages

Direct To Web has two kinds of pages for constructing queries on the properties of
entities: a query-all page and a query page. When you log into a Direct To Web
application, the query-all page is displayed first by default.

C H A P T E R 2

An Introduction to Direct To Web

Using Your Direct to Web Application 23
Preliminary  Apple Computer, Inc. November 2002

The query-all page enables you to construct a query on an attribute of a particular
entity (queries on relationships are not allowed). To use this page, select a property
from an entity’s pop-up list, specify the comparison operator, type the string to
search on and click the magnifying-glass button.

The query page, on the other hand, is tied to a particular entity but allows you to
construct queries on relationships as well as attributes. The following illustrates a
query page:

24 Using Your Direct to Web Application
Preliminary  Apple Computer, Inc. November 2002

C H A P T E R 2

An Introduction to Direct To Web

The first column in the table lists the current entity’s properties. The second column
contains pop-up lists and text fields that let you enter values to construct queries on
single and multiple properties. When you specify values for multiple properties, the
query becomes the logical AND of the queries on the individual properties.

A property is either an attribute (a value stored directly in this entity’s table) or a
relationship (an association between this entity and another entity). For example, in
the figure above, First Name is an attribute and Contact Info is a relationship. You
can use the WebAssistant to hide properties that you don’t want users to see.

Note: Direct to Web only displays properties that are class properties. In addition,
primary keys and attributes marked as the source of a relationship are hidden by
default.

Properties are represented in various ways. For example, in the figure, you enter a
single string value for First Name, while you enter a range of values for User Type.
You can change the representation of most properties using the WebAssistant. In
particular, you may want to change how relationships are shown, since by default,
you query them by specifying an ID, which is something the user is unlikely to
know. See “Changing How Properties Are Displayed” (page 39) for more
information on the different ways of representing properties in your application’s
pages.

You can choose a string operator (starts with, contains, ends with, is, like, =, <>, <,
<=, >, >=) and specify a string with optional special characters in query fields for
string searches. For example, you could select “starts with” in the Customer entity’s

C H A P T E R 2

An Introduction to Direct To Web

Using Your Direct to Web Application 25
Preliminary  Apple Computer, Inc. November 2002

Last Name pop-up list and enter “sh” in the text field to search for all customers
whose last name begins with those characters. You can also use the “like” operator
and enter a string with the asterisk character to indicate “all occurrences.” For
instance, you could enter “*rob*” to return all customers whose last name contains
the substring “rob”. Alternatively you could select “contains” in the pop-up list and
enter “rob” to return the same customers.

In the Customer query, to get a list of all customers whose last name containts “id”
and first name begins with “r”, you would:

1. Select “starts with” in the First Name pop-up list and enter “r” in the text field.

2. Select “contains“ in the Last Name pop-up list and enter “id”the text field.

3. Click Query DB.

The results are displayed in a list page; see “List Pages and Select Components”
(page 25).

To clear the query page, click Build Query.

List Pages and Select Components

A list page displays a table showing multiple records of an entity. List pages are
used to display the results of a query, or to show the records satisfying a to-many
relationship in another list or inspect page.

Each row in the table represents a record. By default, a batch of ten records are
shown in a page. To change the batch size, type a number in the “Display _ items”
field and press Return or Enter. To display additional records in either direction,
click the triangle buttons or enter the page number you want to go to.

26 Using Your Direct to Web Application
Preliminary  Apple Computer, Inc. November 2002

C H A P T E R 2

An Introduction to Direct To Web

Each column in the list represents one of the entity’s properties. By default, all
properties are shown in alphabetical order. You can hide columns and change their
order by using the WebAssistant; see “Customizing Your Application With the
WebAssistant” (page 33).

The symbols to the right of attribute names represent their sort order:

� : ascending order

� : descending order

� : unsorted

To change the sort order for any attribute, click the title to cycle between ascending,
descending, and unsorted. By default, the records are sorted in ascending order by
the attribute in the first column. You can specify up to three columns to sort on; the
last one specified becomes the primary sort key.

For properties that represent relationships, an Inspect button appears in the cell by
default (DisplayToManyFault).

When you click the Inspect button one of two things happen, depending on the type
of relationship:

� If it is a to-one relationship, an inspect page appears, showing the destination
record.

In the above example, the Customer entity’s Agent relationship is a to-one
relationship to the Agent entity. If you click the Inspect button, an inspect page
appears for the Agent entity corresponding to the selected customer; see
“Inspect and Edit Pages” (page 27).

� If it is a to-many relationship, another list page appears, showing all the
destination records in the relationship.

In the above example, the Customer entity’s Suggested Listings relationship is a
to-many relationship to the Listing entity. If you click the Inspect button, a list
page appears, showing all the suggested listings in the selected customer.

Note: By default, the list page does not display relationships (including the
Inspect buttons). You can configure the list page to display relationships using
the WebAssistant; see “Customizing Your Application With the WebAssistant”
(page 33).

C H A P T E R 2

An Introduction to Direct To Web

Using Your Direct to Web Application 27
Preliminary  Apple Computer, Inc. November 2002

You can use the WebAssistant to display the related records directly in the table
instead of with an Inspect button; see “Customizing Your Application With the
WebAssistant” (page 33).

The select component looks a lot like the list page, but instead of the Edit button
there is a Select or Add button. The select component occurs in multiple-component
pages. In the edit-relationship page you click Select or Add to add a record to a
to-many relationship or select a record for a to-one relationship. In the master-detail
page you click Select to select a record to edit. A select component looks like this:

Inspect and Edit Pages

Inspect pages and edit pages display the data for a single record of an entity. An edit
page allows you to make changes to the record and save the changes, while an
inspect page is read-only.

An inspect page looks like this:

28 Using Your Direct to Web Application
Preliminary  Apple Computer, Inc. November 2002

C H A P T E R 2

An Introduction to Direct To Web

Note the buttons at the bottom of the page:

� Delete allows you to delete the record from the database.

� Return takes you back to the page from which you accessed this inspect page.

� Edit brings up the equivalent edit page for this record, so that you can make
changes. (However, if your application specifies a particular entity as read-only,
you won’t be able to edit it.)

Also note the Customers property in the example above. You click the triangle to
display the Customers of this Agent in a list, browser, or table, as in the following
example:

C H A P T E R 2

An Introduction to Direct To Web

Using Your Direct to Web Application 29
Preliminary  Apple Computer, Inc. November 2002

This property is configured with the DisplayToManyTable component. For more on
how this is done, see “Representation of Relationships” (page 41).

An edit page (or edit component) looks like this:

It is similar to the inspect page, except that it has a Save button (for saving changes
to the database) instead of an Edit button. If you click the Edit button next to the list
of Customers, an edit-relationship page is displayed for editing the records in the
to-many relationship. Edit components can occur in multiple-component pages,
such as the master-detail page.

Edit-Relationship Pages

An edit-relationship page allows users to add records to a relationship and remove
records from the relationship. Users typically come to these pages when they click
an Edit button next to a relationship in an edit page. Edit-relationship pages consist
of three separate components, of which two are shown at any one time. The first
component lists the relationships of a particular property and contains several
controls. In addition, a query component initially appears for locating another
object to link to for that property. The third component, a select component, appears
after you have specified a query and is discussed in the following pages.

30 Using Your Direct to Web Application
Preliminary  Apple Computer, Inc. November 2002

C H A P T E R 2

An Introduction to Direct To Web

This user interface facilitates the following tasks:

� To remove a record from the property, select the key identifying the record in
the browser and click Remove.

� To add a new record to the property, click New Record. An edit component
appears underneath the list of relationships; fill out the fields of the edit
component and click Save to add the new record to the database and the new
relationship to the property above.

� To locate an existing record to add to the relationship, enter the properties to
search on in the query component and click Query DB.

When a query is executed (assuming matching records are found) a select
component replaces the query component.

C H A P T E R 2

An Introduction to Direct To Web

Using Your Direct to Web Application 31
Preliminary  Apple Computer, Inc. November 2002

To add a listed record to the to-many relationship, click the Select button. To
construct a new query, click the Build Query button.

When you have finished editing a relationship, click the Return button under the
browser to return to the original edit page. You must click the Save button in this
page to store the changed relationship in the database.

Master-Detail Pages

Master-detail pages put a select component and an edit component on the same
page, thereby allowing users to select and edit records without having to go to
another page. The following is an example of a master-detail page:

32 Using Your Direct to Web Application
Preliminary  Apple Computer, Inc. November 2002

C H A P T E R 2

An Introduction to Direct To Web

To use a master-detail page, click Select next to a record in the list component. The
record is displayed in an edit component. See “Inspect and Edit Pages” (page 27) for
usage information.

The master-detail page does not appear under Tasks in the WebAssistant (expert
mode). This is because it is defined as a type of list page (BASMasterDetailPage,
NEUMasterDetailPage, or WOLMasterDetail page depending on the look) of the
list task.

C H A P T E R 2

An Introduction to Direct To Web

Customizing Your Application With the WebAssistant 33
Preliminary  Apple Computer, Inc. November 2002

Customizing Your Application With the WebAssistant

The WebAssistant allows you to customize each page of your application. You can
specify

� which entities of the model the application displays and, of these, which are
read-only

� global attributes of pages, such as style, color, and border thickness

� which properties are displayed, and in what order

By default, an entity’s properties are listed in alphabetical order. Often, you’ll
want to change the order, as well as hiding some properties.

� how number and date strings should be represented

� how relationships should be represented

Running the WebAssistant With appletviewer

You can launch WebAssistant using the Java program appletviewer. You might
need to do this if your web browser is unable to launch WebAssistant itself. Follow
these steps:

1. Launch your application with the command-line option D2WWebAssistantEnabled
set to YES. This is covered in “Launching a Direct to Web Application”
(page 19).

2. In the “Run” output of Project Builder, look for a line similar to the following:

DirectToWeb WebAssistant launch line: appletviewer http://localhost:51508/

cgi-bin/WebObjects/D2WTutorial.woa/wa/D2WActions/openWebAssistant

3. Open the Terminal application provided on Mac OS X.

4. Copy the string beginning at “appletviewer” up to “openWebAssistant” to the
Terminal and press Return.

34 WebAssistant Overview
Preliminary  Apple Computer, Inc. November 2002

C H A P T E R 2

An Introduction to Direct To Web

When you complete this procedure, WebAssistant launches and connects to your
application. If you stop and restart the Direct to Web application, the WebAssistant
will re-connect to it—provided it is running on the same port.

A standalone WebAssistant has exactly the same functionality as one launched
inside your browser. However, if the browser you are using is not Java-enabled,
your pages are not automatically refreshed after you click Update. You must either
click your browser’s “reload” or “refresh” button or (when you are picking a new
type of page, such as a MasterDetails page instead of a ListPage), you will have to
re-navigate to the same page.

WebAssistant Overview

When the Web Assistant applet is launched, it appears in a window whose title
indicates the current page and entity:

The WebAssistant has four displays, each selectable by clicking a tab:

� Properties: Allows you to set which properties of an entity are shown in a page,
the order in which they’re displayed, and the display characteristics of
properties (for example, color and alignment).

C H A P T E R 2

An Introduction to Direct To Web

WebAssistant Overview 35
Preliminary  Apple Computer, Inc. November 2002

� Page: Allows you to customize global page properties, such as template, overall
style, color, and border thickness.

� Generation: Only available in expert mode, this display allows you to generate
templates and “freeze” customized pages as reusable components.

� Entities: Allows you to select which entities of the model are hidden, which are
shown, and which are read-only.

The WebAssistant stays synchronous with your browser. When you navigate to a
new page, it displays the settings for that page.

The Web Assistant has two modes, Standard mode and Expert mode. By default the
Web Assistant opens in Standard mode, which lets you customize the current page
in your application. When you customize a page in Standard mode, the changes
apply to all occurrences of that page, and that page only. For example, if you change
the order of properties in an edit page for the Customer entity, then any time a
Customer edit page is displayed, those changes are in effect (provided you have
clicked Update or Save). However, the changes don’t apply to a Customer query,
list, or inspect page; if you want to customize those in the same way, you must do
so explicitly.

Using Web Assistant’s Expert mode, you can customize any page in the application,
regardless of whether it is currently displayed. Thus, by specifying the “*all*”
setting in Expert mode, you could change all pages of a given entity at once. In
addition, you can generate a template or “freeze” a page as a reusable component.
For more information, see “WebAssistant Expert Mode” (page 44).

When you’ve made changes to a page, you can use the buttons at the bottom of the
WebAssistant to apply them:

� Update: sends your changes to the server. On some systems this causes the page
to be refreshed in your browser.

� Revert: causes all settings to revert to their last saved values.

� Use Defaults: reverts all settings to the values they had when the project was
created.

� Save: saves the changes to disk. You need to save your changes in order for them
to persist beyond the current session.

The “Info...” button displays a brief description of the currently selected Direct to
Web component.

36 Restricting Access to Entities
Preliminary  Apple Computer, Inc. November 2002

C H A P T E R 2

An Introduction to Direct To Web

Restricting Access to Entities

The Entities display of the WebAssistant enables you to specify which entities of the
database model appear in the application. Of those entities, it further allows you to
specify which are read-only and which the user can write data to. Records from
read-only entities are restricted from appearing in edit pages.

The user interface for accomplishing these tasks is simple, as the following example
illustrates:

To specify an entity that shouldn’t appear in the application, select it and use the
arrow keys to move it to the Hidden Entities column. The above example shows that
the entities ListingFeature and Suggestions are hidden. To specify an entity that
should be read-only, select it and use the arrow keys to move it to the Read-only
Entities column. The above example shows that the Rating entity has been moved
the the Read-Only column. By default, all entities initially appear in the Read/Write
Entities column.

C H A P T E R 2

An Introduction to Direct To Web

Customizing Pages 37
Preliminary  Apple Computer, Inc. November 2002

Customizing Pages

The Customize Page display of the WebAssistant enables you to set global
attributes for the current page. These attributes include the page template, the color
of the table, whether this color alternates with another color in lists, and the size of
the border enclosing the page. The following is an example of the Customize Page
display:

� To change the template defining the page style, choose another template from
the pop-up list.

� To change the thickness of the border around the page, choose a value from the
Border Size pop-up list, replacing the current number. You can specify a border
thickness of 0 to 5 pixels.

� To change the color of the table, move the sliders to the right of the sample color.
The color specification is RGB-based (that is, a specific mixture of red, green, and
blue). The top slider manipulates red saturation, the middle slider is for green,

Click here to choose the
template for this page.

38 Setting Which Properties are Displayed
Preliminary  Apple Computer, Inc. November 2002

C H A P T E R 2

An Introduction to Direct To Web

and the bottom slider is for blue. The three pairs of hexadecimal digits after the
number sign in the field represent (left to right) saturation levels of red, green,
and blue.

Setting Which Properties are Displayed

The Properties display of the WebAssistant enables you to specify which properties
of an entity appear in a page (or component) and the order in which these properties
appear. Most of the user-interface elements for accomplishing these things are in the
left half of the display as shown in the following example:

The entity’s properties (attributes and relationships) in the Show column are
displayed in the page. To the left of the arrows is a key browser that shows
relationships (which appear with a “+”) and hidden attributes. You can click on a
relationship to show its attributes and relationships in the next column of the key
browser.

Choose a property to show with the key path browser...

or type it into this field.
Use the arrow buttons to show or hide
properties, or to change their order.

Enter a label for the
property here.

Component pop-up list.

These properties appear
on the page

C H A P T E R 2

An Introduction to Direct To Web

Changing How Properties Are Displayed 39
Preliminary  Apple Computer, Inc. November 2002

The WebAssistant displays the keys that can be found in the entity’s source code. If
you want to show a key or key path that doesn’t appear, you can type in the text
field.

For each property, you can

� Move it to the key browser by selecting it and clicking the left arrow. This hides
the property. Similarly, if a property is hidden, you can show it by selecting it
and clicking the right arrow.

� Move it up or down in the list by clicking the up and down arrows. This changes
the order of appearance of the properties in the page (left to right or top to
bottom, depending on the component).

By default, the WebAssistant shows only class properties. If you want to show a
custom method or a keypath, type it into the textfield under the “Pick Properties To
Show” label (for example, “agent.photo”).

You can also change the title for a property by editing the string in the Display
(Disp.) field. This change only affects the way the property is labeled in the page and
has no effect on the actual property name.

Changing How Properties Are Displayed

You can use the Properties display of the WebAssistant to specify various display
characteristics of properties, such as formatting, color, alignment, and the
representation of relationships. The fields and controls for setting these
characteristics are on the right half of the display. Here is an example:

40 Changing How Properties Are Displayed
Preliminary  Apple Computer, Inc. November 2002

C H A P T E R 2

An Introduction to Direct To Web

Let’s go over the various elements of this part of the user interface:

� At the top is the Display field, which holds the title of the property for the
current page and entity. As discussed in “Setting Which Properties are
Displayed” (page 38), you can edit this string.

� Next to the Display field, in parentheses, is its data type. The data type
determines the set of display components available for use. You cannot edit this
information directly (however, you can edit the model file, which specifies the
data type, using EOModeler).

� The pop-up list shows the name of the component that is used to display the
selected property in the current page. From this menu you can choose a different
component to display the property. When you choose a display component, the
set of controls and fields in the right side of the Properties display can change.

The items in the pop-up list identify reusable components in the Direct to Web
framework called property-level components, which are used to render the
properties on the pages you see in your application. Each property in a page of any
type is initially shown in a default way for that type using a default property-level
component.

Textual Attributes and Formatting
The display components available for the currently selected property offer
characteristics suitable to the data type and function of the attribute. A few
examples might help to clarify this statement:

� If the data type of the attribute is a String, but it is also a URL, then the
DisplayHyperlink or DisplayMailTo components could be what you want.

C H A P T E R 2

An Introduction to Direct To Web

Changing How Properties Are Displayed 41
Preliminary  Apple Computer, Inc. November 2002

� If the attribute is a date (NSTimestamp), then you might choose the
DisplayString component and provide format specifiers to have the date
formatted in a certain way.

� Similarly, if the attribute is a currency value (BigDecimal), you might want to
use the DisplayNumber component and format the display of the attribute with
two decimal positions and a leading dollar sign.

� If you want to highlight a certain column of values in a table by giving them a
different color, then you could choose the DisplayStyledString component that
lets you apply a color to a property.

You can click the Info button in the WebAssistant to get a short description of the
currently selected display component.

The three most common display characteristics for properties are alignment,
formatting, and color. Each of these has their own controls or fields in the right side
of the Property display:

� Alignment: Choose Right, Center, or Left from the pop-up list to specify the
alignment of text within a cell of a table.

� Formatter: You can have your application display some types of data, such as
dates and numbers, as formatted strings. For example, the date “Sat 4 Jul 98” can
be also represented as “July 4, 1998.” The number one thousand can be
represented either as “1,000” or “1.000”, depending on the locale. There are
different format specifiers for dates and numbers; check the reference
documentation for the NSTimestampFormatter and NSNumberFormatter
classes for details.

� Color: To change the color of text, either move the sliders to the right of the
sample color or enter hexadecimal numbers in the field above the sliders. The
color specification is RGB-based (that is, a specific mixture of red, green, and
blue). The top slider manipulates red saturation, the middle slider is for green,
and the bottom slider is for blue. The three pairs of hexadecimal digits after the
number sign in the field represent (left to right) saturation levels of red, green,
and blue.

Representation of Relationships
Properties that are relationships (instead of attributes) have their own set of display
components that you can use. Take the following list page as an example:

42 Changing How Properties Are Displayed
Preliminary  Apple Computer, Inc. November 2002

C H A P T E R 2

An Introduction to Direct To Web

There are two relationships on this page. One is a to-one relationship (Agent) and
the other is a to-many relationship (Suggested Listings). By default, all to-many
relationships are displayed using DisplayToManyFault, and to-one relationships
are displayed using DisplayToOneFault. “Fault” indicates that the records in the
relationship aren’t displayed until they are asked for; that is, until the user clicks
Inspect. When you click Inspect, a list page appears, showing all the records in the
relationship (such as all suggested listings for the customer).

You can change the display component for the relationship to get a different
presentation. Consider the Suggested Listings relationship in the Customer-List
page example above. Using your browser, navigate to the list page for the Customer
entity. Move the suggestedListings property to the Show column using the
WebAssistant and choose D2WDisplayToManyBrowser from the component
pop-up list. The right side of the WebAssistant should look similar to the following
example:

C H A P T E R 2

An Introduction to Direct To Web

Changing How Properties Are Displayed 43
Preliminary  Apple Computer, Inc. November 2002

In addition to the Alignment pop-up list, the WOComponent group includes two
controls specific to the display of relationships. The items in the Target Key browser
are selected attributes of the destination entity; these “target keys” refer to a string
identifying a to-many relationship. In this case the Suggested Listings entity has
many target keys to choose from. In addition, Direct to Web provides a default key
called userPresentableDescription, which is usually a combination of the
relationship’s keys, if there are multiple keys.

The Allow Collapsing checkbox, when checked, causes the relationship initially to
be presented as a disclosure triangle followed by a number and the plural form of
the display name for the destination entity (for example, “3 Listings”). When the
user clicks the triangle, the table cell expands to display the items in the form
appropriate to the display component; in this case, a browser:

To get a better sense of the control you have over the presentation of relationships,
set the display component for the Suggested Listings relationship to
DisplayToMany and uncheck the Allow Collapsing checkbox. When you update
your browser, a cell in the Suggested Listings column should look similar to this:

To-one relationships offer five possibilities for presentation. However, only three
are relevant. The DisplayToOneFault component presents an Inspect button which,
when clicked, displays the relationship record in an inspect page. The
DisplayToOne component displays the target key for the single destination record
as a hyperlink which, when clicked, brings you to the same inspect page. Finally,

44 WebAssistant Expert Mode
Preliminary  Apple Computer, Inc. November 2002

C H A P T E R 2

An Introduction to Direct To Web

there is always the option of using a D2WCustomComponent. For more
information on creating custom components, see “Creating a Custom
Property-Level Component” (page 83).

A note of caution: The type of display component appropriate to a relationship
depends on the likely number of records in that relationship. For example, the
Agent entity has a Listings to-many relationship; if some agents have numerous
listings, it might make more sense to use DisplayToManyFault (that is, the Inspect
button) rather than display the listing numbers of all those listings in a cell in the
table.

To find out more about a display component for a relationship, click the Info button
in the WebAssistant after selecting the component.

WebAssistant Expert Mode

Expert mode is similar to standard mode, except that it allows you to make changes
to any page in your application whether it is currently displayed in your browser or
not. If you click the Expert mode button at the bottom of the WebAssistant, the
window expands to include the following interface:

The tasks pop-up list shows the types of pages available in Direct to Web. The
Entities pop-up list shows the entities in the model.

C H A P T E R 2

An Introduction to Direct To Web

WebAssistant Expert Mode 45
Preliminary  Apple Computer, Inc. November 2002

Choosing a Page to Customize
To customize any page in your application, simply select the type of page and the
entity. The figure above shows an example of choosing the list page for the
Customer entity, making the WebAssistant focus on this page rather than the page
currently showing in the browser.

If you select “*all*” under Tasks, any changes you make affect all customizable
pages for the selected entity. If you select “*all*” under Entities, you’ll see a list of
data types that exist in the application, as shown in the following figure.

Any changes you make affect all occurrences of that type. For example, the figure
shows NSTimestamp selected. You can specify a formatter, and pick a component
to use anywhere in the application that an NSTimestamp object is displayed.

If you click Synchronize, the task and entity for the current browser page are
selected in the WebAssistant.

You can also select the Page pane in the WebAssistant window while in Expert
mode and change the underlying component, color, and border thickness of
whatever page for whatever entity you select in the Tasks and Entities pop-up
menus.

46 WebAssistant Expert Mode
Preliminary  Apple Computer, Inc. November 2002

C H A P T E R 2

An Introduction to Direct To Web

Named Configurations
Once you have customized a page, you can capture the settings in a named
configuration. Named configurations are used when you need to display more than
one type of page for a particular task and entity. Consider a page that lists
properties for a real estate agency. A potential buyer would want to see the things
like amount of rooms and bathrooms along with the asking price. A real estate agent
might want to see how many times the property has been looked at and what the
selling price is. In addition, the buyer should not be able to edit any information,
while the agent might be able to edit some properties. To set up such a system, you
create two named configurations for listing properties: one for the potential buyer
and another for the real estate agent.

Named configurations can only be displayed programmatically; the WebAssistant
can edit named configurations but can’t display the changes in your browser.

To create a new named configuration follow these steps:

1. In the expert mode interface, click Add.

A panel appears with a text field containing a default name for the configuration
(the page name followed by the entity name).

2. Enter a new name for the configuration if you choose.

3. Click Ok.

4. Configure the Properties and Page panes for the named configuration.

5. Click Save.

To edit a named configuration, select it from the Named Configurations pop-up list,
make the changes, and click Save.

To delete a named configuration, select it from the Named Configurations pop-up
list and click Delete.

C H A P T E R 2

An Introduction to Direct To Web

Generating Components 47
Preliminary  Apple Computer, Inc. November 2002

Generating Components

When you have worked with the WebAssistant and customized your pages to your
liking, you may still want to add more features to your application. To do so, you
can “freeze” a page; that is, save it as a WebObjects component. When you do this,
the component becomes part of your project and is no longer created “on the fly” by
Direct to Web. This has several advantages:

� You have complete control over the visual appearance of the page. You can add
any static or dynamic HTML elements you like, using a tool such as WebObjects
Builder.

� You can add functionality to the page by editing the component’s Java code, as
well as by editing the bindings of the page’s dynamic elements.

� Your application’s performance improves because Direct to Web doesn’t have to
go through the process of creating the page “on the fly.”

The main disadvantage of generating components is that you lose the ability to
modify settings with the WebAssistant since the entity, property settings, and page
configuration are stored directly in the generated component. To modify the page,
you must edit the component or its corresponding .java file. Therefore, you should
try to get your settings as close as possible to what you want before generating the
component.

To generate a component:

1. Click the Expert Mode button at the bottom of the WebAssistant to enter Expert
mode.

2. Click the Generation tab at the top of the WebAssistant.

48 Generating Components
Preliminary  Apple Computer, Inc. November 2002

C H A P T E R 2

An Introduction to Direct To Web

3. Select the task and entity corresponding to the page you want to generate.

You can’t select “*all*” to generate multiple components. You must generate the
components one at a time.

4. In the Advanced Options group of controls, make sure the “Use DirectToWeb or
User Template” radio button is selected.

5. Click Freeze Component.

The Freeze Component window appears. It contains a text field with a default
name for your page (the page name followed by the entity name). You can edit
the name if you choose.

6. Click the Ok button.

C H A P T E R 2

An Introduction to Direct To Web

Generating Components 49
Preliminary  Apple Computer, Inc. November 2002

Direct to Web generates a component (with extension .wo) and a corresponding
.java file and adds them to your project. You may have to wait a few moments
for this process to complete. Your settings are automatically saved.

7. Rebuild and run your project, and restart the WebAssistant.

If you decide not to use the frozen component and have Direct to Web build the
page “on the fly,” select the “Use DirectToWeb or User Template” option.

When you generate a page and click Update, the browser’s current page doesn’t
reflect the changes. To use the new component, you must rebuild the application,
relaunch it, and then navigate to a new instance of the page. For example, if the
current page is a Movie query page, and you use the WebAssistant to freeze it, you
must rebuild the project with the frozen component, then launch the application
and navigate to a new instance of Movie query (by clicking Build Query); the new
instance uses the frozen component.

The generated component is like any other WebObjects component. You can edit
your component graphically using WebObjects Builder. You can also examine the
HTML and bindings (.wod file) of the new component in Project Builder.

Direct to Web also generates Java code for your component, which you can modify
appropriately to your needs. Each component implements an interface that is
appropriate to the page: QueryPageInterface, ListPageInterface,
InspectPageInterface, and EditPageInterface. For example, the QueryAgent.java file
in Listing 2-1 implements the QueryPageInterface. For example, it contains an
action method called queryAction that returns a component when the Query DB
button is clicked. (Note that the component’s submit button is bound to queryAction
in QueryAgent.wod.)

Listing 2-1 QueryMovieRole.java generated by the Web Assistant

import com.webobjects.appserver.*;

import com.webobjects.eocontrol.*;

import com.webobjects.directtoweb.*;

import com.webobjects.eoaccess.*;

import java.util.*;

public class QueryAgent extends WOComponent implements QueryPageInterface {

50 Generating Components
Preliminary  Apple Computer, Inc. November 2002

C H A P T E R 2

An Introduction to Direct To Web

 protected EODatabaseDataSource _queryDataSource;

 protected WODisplayGroup displayGroup;

 protected NextPageDelegate _nextPageDelegate;

 public WOComponent queryAction() {

 _queryDataSource =new

EODatabaseDataSource(session().defaultEditingContext(), "Agent");

 _queryDataSource.setAuxiliaryQualifier(qualifier());

 _queryDataSource.fetchSpecification().setIsDeep(true);

_queryDataSource.fetchSpecification().setUsesDistinct(false);

_queryDataSource.fetchSpecification().setRefreshesRefetchedObjects(false);

 if (_nextPageDelegate==null) {

 ListPageInterface

listPage=D2W.factory().listPageForEntityNamed("Agent",session());

 listPage.setDataSource(_queryDataSource);

 listPage.setNextPage(this);

 return (WOComponent)listPage;

 } else

 return _nextPageDelegate.nextPage(this);

 }

public EOQualifier qualifier() {

return displayGroup.qualifierFromQueryValues(); }

 public void setNextPageDelegate(NextPageDelegate delegate) {

 _nextPageDelegate=delegate;

 }

 public EODataSource queryDataSource() { return _queryDataSource; }

 public String entity() {

 return "Agent";

 }

 public QueryAgent(WOContext aContext) {

C H A P T E R 2

An Introduction to Direct To Web

User Templates 51
Preliminary  Apple Computer, Inc. November 2002

 super(aContext);

 }

}

User Templates

Sometimes you need to change the appearance of a Direct to Web page without
freezing the component. You might want to change all of the pages for a particular
task (list pages for example) without freezing components for every entity. Or you
might want to use the Web Assistant to fine-tune pages having your custom
appearance.

Direct to Web allows you to generate, modify, and use templates. Templates are
WebObjects components that Direct to Web can use to generate pages (list pages for
example) for any entity. Direct to Web provides a number of prebuilt templates
from which you generate user templates. User templates appear together with the
prebuilt templates in the Web Assistant and you can apply them to pages in your
project.

These are the advantages of using templates:

� You can use a template for any entity.

� You can modify the properties and page appearance with the Web Assistant.

� Since the template is a WebObjects component, you have control over its visual
appearance. You can add any static or dynamic HTML elements you like, using
a tool such as WebObjects Builder.

� You can add functionality to the template by editing the component’s Java code,
as well as by editing the bindings of the component’s dynamic elements.

Templates are slower than frozen components since Direct to Web generates the
pages that the user sees in the browser.

Generating a Template
Follow these steps to generate a template:

52 User Templates
Preliminary  Apple Computer, Inc. November 2002

C H A P T E R 2

An Introduction to Direct To Web

1. Click Expert Mode at the bottom of the Web Assistant window to enter Expert
mode.

2. Click the Generation tab at the top of the WebAssistant.

3. Select the task corresponding to the page you want to generate.

4. Select “*all*” in the Entities pop-up list.

You must select “*all*” for the entities because the template is independent of the
entity. You cannot select “*all*” for the task to generate multiple templates. You
must generate the templates one at a time.

5. Make sure the “Use DirectToWeb or User Template” radio button is selected.

6. Click Generate Template.

The Generate Template window appears. It contains a text field with a default
name for your template. You can edit the name if you choose.

7. Click the Ok button.

Direct to Web copies a component (with extension .wo) and a corresponding
.java file from a predefined template and adds them to your project. You may
have to wait a few moments for this process to complete. Your settings are
automatically saved.

8. Rebuild and run your project, and restart the WebAssistant.

After you generate the template and rebuild your project, you can use the Web
Assistant to apply the template to a Direct to Web page. See “Customizing Pages”
(page 37).

53
Preliminary  Apple Computer, Inc. November 2002

C H A P T E R 3

3 Direct to Web Architecture

The Direct to Web framework works together with the WebObjects framework to
generate web pages for nine database tasks including querying, editing, and listing.
To do this, Direct to Web uses a task-specific component called a Direct to Web
template that can perform the task on any entity. Direct to Web also translates the
information that the Enterprise Objects Framework provides about the entity into
values the Direct to Web template needs to render the page.

This chapter discusses the Direct to Web architecture and how Direct to Web
generates a page. More specifically, it describes

� the different types of components that Direct to Web uses to render the pages

� the Direct to Web context, an instance of the D2WContext class that resolves the
bindings in the Direct to Web template’s binding file

� the Direct to Web factory, an instance of the D2W class that creates the Direct to
Web pages

� how Direct to Web generates a query page

� the Direct to Web rule system, which contains application configuration
information

54 Direct to Web Components
Preliminary  Apple Computer, Inc. November 2002

C H A P T E R 3

Direct to Web Architecture

Direct to Web Components

Direct to Web provides nine types of Web pages to perform the tasks shown in
Table 1. See “Dynamically Generated Pages” (page 21) for more information about
these tasks.

To render these pages, Direct to Web uses three types of components: Direct to Web
templates, Direct to Web reusable components, and property-level components.

Table 3-1 Direct to Web tasks

Task Description

Query Allows the user to construct a query for a particular entity.

Query All Displays all entities and lets the user construct queries on their
attributes.

Inspect Displays a single record of a given entity.

Edit Displays a single record of a given entity and allows the user to
change the record and save it to the database.

List Displays several records of a particular entity in tabular form.

Select Displays several records of a particular entity in tabular form
and allows the user to choose one of them.

Edit
relationship

Adds and removes objects from a relationship.

Confirm Prompts the user to confirm that a record should be deleted.

Error Displays information related to exceptions and other errors.

C H A P T E R 3

Direct to Web Architecture

Direct to Web Templates 55
Preliminary  Apple Computer, Inc. November 2002

Direct to Web Templates

Direct to Web generates the task Web pages using instances of the D2WPage class
(itself a descendent of the WOComponent class) called Direct to Web templates. A
Direct to Web template defines the basic layout for the task’s user interface. Direct
to Web includes 29 templates: nine for the Basic look, ten for the Neutral look, and
ten for the WebObjects look. For more information about looks, see “The Different
Looks for WebObjects Applications” (page 14). The Direct to Web templates are
listed in Table 3-2.

Table 3-2 Direct to Web Templates

Task Basic Look Neutral Look WebObjects Look

Confirm BASConfirmPage NEUConfirmPage WOLConfirmPage

Edit
relationship

BASEditRelationshipPage NEUEditRelationshipPage WOLEditRelationship-
Page

Error BASErrorPage NEUErrorPage WOLErrorPage

Edit, Inspect BASInspectPage NEUInspectPage WOLInspectPage

List, Select BASListPage NEUListPage WOLListPage

List BASMasterDetailPage NEUMasterDetailPage WOLMasterDetailPage

List, Select BASPlainListPage NEUPlainListPage WOLPlainListPage

Query all BASQueryAllEntitiesPage NEUQueryAllEntitiesPage WOLQueryAllEntities-
Page

Query BASQueryPage NEUQueryPage WOLQueryPage

Edit, Inspect NEUTabInspectPage WOLTabInspectPage

56 Direct to Web Reusable Components
Preliminary  Apple Computer, Inc. November 2002

C H A P T E R 3

Direct to Web Architecture

Some Direct to Web templates perform multiple tasks. For example, an InspectPage
template also edits. For some tasks, there are multiple Direct to Web templates in a
given look that you can use. For example, you can use a ListPage, a PlainListPage,
or a MasterDetailPage template to perform the list task.

Like any other WOComponent, a Direct to Web template has an HTML template
(.html) file and a bindings (.wod) file. What differentiates a Direct to Web template
from other components is that it resolves its bindings with the help of the Direct to
Web framework at runtime.

Note that a Direct to Web template is different from a component’s HTML template
(.html) file: a Direct to Web template is a special type of component while an HTML
template is a file containing the HTML code that defines a component’s appearance.

Direct to Web Reusable Components

Some Direct to Web templates can be viewed as implementing more than one task:

� A MasterDetailPage template consists of a select component at the top and an
edit component at the bottom.

� An EditRelationshipPage template consists of a select component at the top and
query, select, and edit components at the bottom.

Direct to Web displays these subcomponents with Direct to Web templates. For
example, a NEUMasterDetailPage displays its select component using a
NEUListPage and its edit component with a NEUInspectPage. However, the Direct
to Web templates are not designed to be nested directly within other Direct to Web
templates. To permit nesting, Direct to Web uses another type of component called

C H A P T E R 3

Direct to Web Architecture

Direct to Web Reusable Components 57
Preliminary  Apple Computer, Inc. November 2002

a Direct to Web reusable component, which acts as an interface between the outer
template and the inner template. There are five types of Direct to Web reusable
components; they are listed in Table 3-3.

Table 3-4 shows how the reusable components are used in the Direct to Web
templates containing multiple tasks. The remaining templates do not contain Direct
to Web reusable components.

Table 3-3 Reusable components

Name Task

D2WEdit Edit

D2WInspect Inspect

D2WList List

D2WQuery Query

D2WSelect Select

Table 3-4 Direct to Web templates and reusable components

Direct to Web Template
Direct to Web Reusable
Components Used

BASMasterDetailPage
NEUMasterDetailPage
WOLMasterDetailPage

D2WSelect, D2WEdit

BASEditRelationshipPage
NEUEditRelationshipPage
WOLEditRelationshipPage

D2WSelect, D2WQuery, D2WEdit

58 Property-Level Components
Preliminary  Apple Computer, Inc. November 2002

C H A P T E R 3

Direct to Web Architecture

In addition to allowing the nesting of Direct to Web templates, Direct to Web
reusable components can also be embedded in your own components; they are
available on a palette in WebObjects Builder. See the Direct to Web Reference for more
information about the individual Direct to Web reusable components.

Property-Level Components

Direct to Web uses property-level components to display, query, and edit individual
properties of an entity. A property is an attribute or relationship of an entity. Direct
to Web defines components for manipulating strings, dates, numbers, to-one
relationships, to-many relationships, and other objects. For example, Table 3-5 lists
some property-level components; these components work with numbers.

At runtime when a template displays a property, Direct to Web chooses which
property-level component should display the property. The choice depends on the
property’s data type and how you configure the application with the Web Assistant.

Table 3-5 Number property-level components (java.lang.Number,
java.math.BigDecimal)

Display Edit Query

D2WDisplayNumber D2WEditNumber D2WQueryNumberOperator

D2WDisplayStyledNumber D2WQueryNumberRange

D2WDisplayBoolean D2WEditBoolean D2WQueryBoolean

C H A P T E R 3

Direct to Web Architecture

Direct to Web Component Organization 59
Preliminary  Apple Computer, Inc. November 2002

Direct to Web Component Organization

Figure 3-1 shows the components in an edit page for the Customer entity in the
Neutral look, with only the attritubutes firstName, lastName, and agent showing.
The top-level component is a Direct to Web template called NEUInspectPage.wo. It
contains the project’s PageWrapper.wo component, which defines the overall layout
of the page. The PageWrapper.wo component contains the MenuHeader.wo component,
which defines the Direct to Web navigation menu. See “The Structure of a Direct to
Web Project” (page 17) for more information about PageWrapper.wo and
MenuHeader.wo.

Figure 3-1 Edit page component organization

The PageWrapper.wo component content comes from the NEUInspectPage Direct to
Web template. This content includes HTML input elements for the visible attributes
of an entity. Each attribute appears in a separate property-level component that

NEUInspectPage.wo Direct to Web template

PageWrapper.wo

MenuHeader.wo WOComponentContent

Property-level
components

D2WEditString

First Name

D2WEditString

Last Name

D2WEditToOneFault

Agent

60 Direct to Web Component Organization
Preliminary  Apple Computer, Inc. November 2002

C H A P T E R 3

Direct to Web Architecture

depends on the attribute’s type. The firstName and lastName attributes are
displayed using D2WEditString components. The agent relationship displays using
a D2WEditToOneFault component.

Pages with nested Direct to Web templates contain Direct to Web reusable
components. Figure 3-2 shows a master detail page in the Neutral look. The
NEUMasterDetailPage.wo Direct to Web template contains PageWrapper.wo which in
turn, contains MenuHeader.wo. NEUMasterDetailPage.wo also contains two reusable
components that act as interfaces to the templates they display: a D2WSelect
component and a D2WEdit component. Each of these components is actually a
WOSwitchComponent that displays a template—the D2WSelect component
displays a NEUListPage Direct to Web template and the D2WEdit component
displays a NEUInspectPage Direct to Web template.

Figure 3-2 Master-detail page component organization

NEUMasterDetailPage.wo Direct to Web template

PageWrapper.wo

MenuHeader.wo WOComponentContent

D2WSelect wo reusable component

D2WEdit wo reusable component

NEUSelectPage.wo
Direct to Web template

NEUInspectPage.wo
Direct to Web template

C H A P T E R 3

Direct to Web Architecture

The Direct to Web Context 61
Preliminary  Apple Computer, Inc. November 2002

The Direct to Web Context

As mentioned earlier, a Direct to Web template is rendered using runtime
information about the entities it displays. To translate that information into
something you can bind to the template’s dynamic elements, Direct to Web uses an
instance of the D2WContext class called the Direct to Web context. This object has
two functions: it maintains a state dictionary that holds the state of a Direct to Web
template as it renders, and it provides values that you can bind directly to attributes
of dynamic elements. Each instance of a Direct to Web template has an associated
Direct to Web context.

Maintaining State
As the Direct to Web template changes state as it is rendered, the Direct to Web
context changes state with it. Specifically, the Direct to Web context uses an
NSDictionary containing

� the current task

� the current entity

� the current property (attribute or relationship)

The task and the entity remain constant while the template renders (with the
exception of the query all template, for which only the task remains constant). The
property does not stay constant, however. Consider an edit page. It displays the
entity name and the entity’s visible properties. To display the properties, the Direct
to Web template iterates through them using a WORepetition. As it iterates, the
Direct to Web context updates the information about the current property in its
dictionary.

Providing Binding Values
Each Direct to Web template has a Direct to Web context called d2wContext, which
implements the EOKeyValueCoding interface. Thus you can bind directly to keys
that the context responds to. For example, Listing 3-1 shows the bindings file for a
Direct to Web template that displays the name of the entity.

62 The Direct to Web Context
Preliminary  Apple Computer, Inc. November 2002

C H A P T E R 3

Direct to Web Architecture

Listing 3-1 Bindings file for a Direct to Web template

String1 : WOString {

value = d2wContext.entity.name;

};

The Direct to Web context determines the values for the keys
(d2wContext.entity.name for example) in one of three ways:

� it looks it up in its state dictionary

� it accesses application configuration information. (The Web Assistant is the
primary way to modify the application configuration.)

� it derives values from the state and configuration information

Resolving Keys With the State Dictionary

The state dictionary contains the following entries:

If the dictionary contains the key the template needs, the Direct to Web context
resolves the key by returning the value in the dictionary. Otherwise the Direct to
Web context resolves the key using one of the other ways.

Key Description of Value

task A string representing the current task.

entity An EOEntity representing the current entity.

propertyKey A string representing the key of the current property.

attribute An EOAttribute representing the current attribute (null if the
current property is a relationship.)

relationship An EORelationship representing the current relationship
(null if the current property is an attribute.)

C H A P T E R 3

Direct to Web Architecture

The Direct to Web Context 63
Preliminary  Apple Computer, Inc. November 2002

Resolving Keys With the Application Configuration

Some keys can only be resolved using the application configuration information,
which is stored as a database of rules. For example, a rule to determine the
property-level component for the dateReleased attribute might be “If the task is
‘edit’, the entity name is ‘Customer’, and the property key is ‘lastName’ then the
value for the componentName key is ‘D2WEditString’.”

The Direct to Web context uses the rule engine to resolve keys that aren’t in its
dictionary. Figure 3-3 shows how the rule engine relates to the Direct to Web
context. “The Rule System” (page 70) contains detailed information on how the rule
engine works.

Figure 3-3 Direct to Web Architecture

Direct to Web
context

Direct to Web
context

Rule engine

Direct to Web
template

Direct to Web
template

Direct to Web
factory

creates

64 The Direct to Web Factory
Preliminary  Apple Computer, Inc. November 2002

C H A P T E R 3

Direct to Web Architecture

Resolving Derived Values

The rule engine also provides objects that have methods that derive values from the
Direct to Web context’s state dictionary. An example of a derived value is the name
displayed for a property: a method converts a property name like lastName to a
display string “Last Name”. Using derived values is discussed in more detail in
“The Rule System” (page 70).

The Direct to Web Factory

Direct to Web pages are created by the Direct to Web factory, an instance of the D2W
class (see Figure 3-3 (page 63)). This object creates pages by instantiating a Direct to
Web context and a Direct to Web template for each page. “Rendering a Direct to
Web Page: An Example” (page 64), shows how the factory generates a query page.

Rendering a Direct to Web Page: An Example

This section describes how the components, the Direct to Web context, and the
Direct to Web factory interact while creating and rendering a query page for the
Customer entity. This example begins with the user viewing a query all page in the
Basic look and clicking a hyperlink labeled “more..” in the Customer row, which
links to the query page. The query all page is rendered using a
BASQueryAllEntitiesPage.wo template.

Creating the Query Page
When the user clicks the hyperlink, the hyperlink invokes the
showRegularQueryAction method defined in the D2WQueryAllEntitiesPage class,
the superclass of the BASQueryAllEntitiesPage class. Listing 3-2 shows the
implementation of the showRegularQueryAction method.

C H A P T E R 3

Direct to Web Architecture

Rendering a Direct to Web Page: An Example 65
Preliminary  Apple Computer, Inc. November 2002

Listing 3-2 D2WQueryAllEntitiesPage.showReqularQueryAction

public WOComponent showRegularQueryAction()

{

QueryPageInterface newQueryPage = D2W.factory().queryPageForEntityNamed

(entity().name(), session());

return (WOComponent)newQueryPage;

}

The Direct to Web factory object creates a Direct to Web context and initializes its
NSDictionary by setting the value for the task key to “query” and the value for the
entity key to the Customer EOEntity.

To determine which Direct to Web template to create, the Direct to Web factory asks
the Direct to Web context for the value of the pageName key. Since this key is neither
in the dictionary nor a derived value from the dictionary, the Direct to Web context
enlists the aid of the rule engine. Listing 3-3 shows the rules that resolve the key.

Listing 3-3 Rules used to resolve the pageName key

((look = “BasicLook”) and (task = “query”)) => pageName = “BASQueryPage”

true => look = “BasicLook”

A rule has a left-hand side and a right-hand side separated by “=>”. The left-hand
side specifies a condition that must be met for the rule to be a candidate to “fire,” or
resolve a key. The right-hand side specifies the key-value assignment that takes
place when the rule fires. Since the left-hand side for the second rule is true, the rule
always fires when the Direct to Web context wants the value for the look key.

Table 3-6 Initial Direct to Web context dictionary

Key Value

task “query”

entity <EOEntity Customer>

66 Rendering the Direct to Web Template
Preliminary  Apple Computer, Inc. November 2002

C H A P T E R 3

Direct to Web Architecture

There are three sources for the rules that the rule engine uses:

� The Direct to Web framework defines rules that determine the default
application behavior.

� You can write your own rules that override the framework’s defaults rules.

� The Web Assistant generates rules involving the specific application
information. These rules are generated automatically as you configure the
application with the Web Assistant; you don’t have to write them.

See “The Rule System” (page 70) for more information about rules.

The two rules that resolve the pageName key (defined in the Direct to Web
Framework) fire and the Direct to Web context returns “BASQueryPage” as the
value for the pageName key.

Knowing the template name, the Direct to Web factory object creates a page using
the WOComponent.pageWithName method. Then it attaches the Direct to Web context to
the newly generated page.

Rendering the Direct to Web Template

Now the WebObjects framework begins to render the template. Listing 3-4
(page 67) shows excerpts from the HTML template for the BASQueryPage Direct to
Web template; the listed portions of the file are discussed in this example. Listing
3-5 (page 67) shows the corresponding sections in the bindings file.

First, the Direct to Web template displays the page wrapper. To do so, it needs to
resolve the WOComponentName binding for the PageWrapper
WOSwitchComponent (see Listing 3-5 (page 67)). A WOSwitchComponent
displays a nested component that has the name specified by its
WOComponentName binding, which in this case is bound to the
d2wContext.pageWrapperName key. Since the Direct to Web Context can’t find it in its
dictionary, it invokes the rule engine to resolve the key, which fires the rule:

true => pageWrapperName = “PageWrapper”

C H A P T E R 3

Direct to Web Architecture

Rendering the Direct to Web Template 67
Preliminary  Apple Computer, Inc. November 2002

The Direct to Web context returns “PageWrapper” for the WOComponentName
binding and the WOSwitchComponent displays the application’s PageWrapper.wo
component. The template continues to render, resolving its keys in a similar way.

Listing 3-4 BASQueryPage.html excerpts

<WEBOBJECT NAME=PageWrapper>

.

.

<WEBOBJECT NAME=ResourceRepetition>

.

.

... <WEBOBJECT NAME=ResourceLabel>: ... </WEBOBJECT>

.

.

<WEBOBJECT NAME=ResourceInputRepresentation></WEBOBJECT>

.

.

</WEBOBJECT>

</WEBOBJECT>

Listing 3-5 BASQueryPage.wod excerpts

PageWrapper: WOSwitchComponent {

WOComponentName = pageWrapperName;

...

}

ResourceInputRepresentation: WOSwitchComponent {

WOComponentName = d2wContext.componentName;

...

}

ResourceLabel: WOString {

...

value = d2wContext.displayNameForProperty;

}

68 Setting the Property Key
Preliminary  Apple Computer, Inc. November 2002

C H A P T E R 3

Direct to Web Architecture

ResourceRepetition: WORepetition {

...

item = d2wContext.propertyKey;

list = d2wContext.displayPropertyKeys;

}

Setting the Property Key

When the template begins to render the query fields for the entity’s attributes and
relationships (like the agent and contact info) it encounters the WORepetition
labeled ResourceRepetition. See Listing 3-4 (page 67) and Listing 3-5 (page 67). The
WORepetition’s list attribute is bound to d2wContext.displayPropertyKeys. Since
displayPropertyKeys is not in its dictionary, the Direct to Web context resolves the
key using the rule engine, which causes the following rule to fire:

true => displayPropertyKeys = “defaultPropertyKeysFromEntity”

The defaultPropertyKeysFromEntity key refers to a method that derives a value
based on the Direct to Web context’s dictionary. See “The Rule System” (page 70)
for more information about the how derived values are handled. The
defaultPropertyKeysFromEntity method returns an NSArray containing the
Customer entity’s property keys, which resolves the WORepetition’s list binding.

As the repetition iterates, it sets the item attribute for each of the objects in the list.
The first object is the string “agent”. Since item is bound to d2wContext.propertyKey,
the Direct to Web context sets the value for propertyKey in its dictionary to “agent”.
At the same time, it sets the value for the attribute key to null and the value for the
relationship key to the agent EORelationship, since a Customer’s agent property is
a relationship and not an attribute. Now the Direct to Web Context dictionary
contains the information listed in Table 3-7.

C H A P T E R 3

Direct to Web Architecture

Resolving Keys That Depend on the Property 69
Preliminary  Apple Computer, Inc. November 2002

Resolving Keys That Depend on the Property

As the WebObjects framework continues to render the ResourceRepetition
WORepetition, it encounters the ResourceLabel WOString. See Listing 3-4 (page 67).
The value attribute is bound to d2wContext.displayNameForProperty. This causes the
following rule to fire:

true => displayNameForProperty = “defaultDisplayNameForProperty”

The derived value for the defaultDisplayNameForProperty key is implemented by a
method that capitalizes the property key in the context’s dictionary, inserts spaces
between words with mixed case, and returns the resulting name “Agent”, which the
template displays.

Next, the template displays the property-level component that queries for the agent
relationship. Since this component is known only at runtime, the Direct to Web
template displays it with a WOSwitchComponent called
ResourceInputRepresentation. See Listing 3-5 (page 67). The
WOSwitchComponent’s WOComponentName attribute is bound to
d2wContext.componentName. When the context evaluates this key, the following rule
fires:

Table 3-7 Direct to Web context dictionary after setting propertyKey

Key Value

task “query”

entity <EOEntity Customer>

propertyKey “agent”

attribute null

relationship <EORelationship agent>

70 The Rule System
Preliminary  Apple Computer, Inc. November 2002

C H A P T E R 3

Direct to Web Architecture

((task = “query”) and (propertyType = “r”)

and (not (relationship.isToMany = (java.math.BigDecimal)”1”))

=> componentName = “D2WQueryToOneField”

Thus the WOSwitchComponent displays a D2WQueryToOneField.wo reusable
component from the DirectToWeb framework.

The rest of the template renders in a similar way.

The Rule System

Direct to Web stores its configuration in the form of rules. The following is an
example of a rule:

((task = “query”) and (not (attribute = null))

and (attribute.valueClassName = “java.lang.String”)

=> componentName = “D2WQueryStringComponent”

A rule consists of five parts, of which three are shown in the example:

� a left-hand side, which is separated from the right-hand side by “=>”

The left-hand side specifies a condition that must be true for the rule to be a
candidate to fire. In this case, the task must be “query”, the attribute must not be
null and its value must be a Java String.

� a right-hand-side key (componentName in this case)

The right-hand-side key must match the key the Direct to Web context is seeking
for the rule to be a candidate to fire.

� a right-hand-side value (”D2WQueryStringComponent” in this case)

The right-hand-side value specifies the value for the right-hand-side key when
the rule fires. It can be a constant value (as in this case) or a value computed by
a method.

� a priority

The priority helps Direct to Web decide which rule should fire when there are
several candidates. See “Deciding Which Candidate Should Fire” (page 71) for
more information about the rule priority.

C H A P T E R 3

Direct to Web Architecture

The Rule System 71
Preliminary  Apple Computer, Inc. November 2002

� an assignment class specifier

The assignment class sets the value for the right-hand-side key when the rule
fires. The default assignment class, Assignment, defined in the Direct to Web
framework, assigns a constant value like “D2WQueryStringComponent”. When
the right-hand-side value is derived using a method, the assignment class
specifies a class that contains the method.

Deciding Which Candidate Should Fire
When the Direct to Web context asks for the value for a key, there are typically
several rules that can fire. For example, consider the following rules to resolve the
componentName key:

true => componentName = “D2WUneditable”

(task = “inspect”) => componentName = “D2WDisplayString”

((task = “inspect”) and

(attribute.valueClassName = “com.webobjects.foundation.NSTimestamp”))

=> componentName = “D2WDisplayDate”

The left-hand side of the first rule is always true. Such rules are useful for providing
“fallback” values when all other rules fail to fire. Note that if the left-hand side for
the third rule is true, all three rules are candidates for firing. The rule engine must
choose which rule will fire.

To make the choice, Direct to Web employs a priority system. Each rule has a
priority. The single rule with the highest priority fires. By convention, the following
priorities are used in Direct to Web.

Priority Description

0-10 Reserved for Direct to Web framework and
fallback rules

100-105 WebAssistant rules

72 The Rule System
Preliminary  Apple Computer, Inc. November 2002

C H A P T E R 3

Direct to Web Architecture

If two or more rules have the same priority, the rule with the most specific left-hand
side (applying to the least number of cases) fires. Direct to Web measures how
specific a rule is by counting the number of clauses joined by an and operator; the
more clauses the rule has, the more specific it is. Clauses joined by the or operator
count as a single clause.

If two or more rules have the same priority and are equally specific, Direct to Web
arbitrarily chooses one.

The rule system resolves keys recursively. In other words, the rule system can
resolve a rule based on the outcome of another rule. Consider a rule for the pageName
key:

((look = “BasicLook”) and (task = “query”)) => pageName = “BASQueryPage”

The look key is defined by a rule like this:

true => look = “BasicLook”

To resolve the pageName key, the rule engine asks the Direct to Web context for
values for the look and the task keys. The Direct to Web context then invokes the
rule engine to resolve the look key. This extra step isn’t necessary for the task key;
it’s already in the Direct to Web context’s local dictionary. Although recursive rules
are powerful, they can hamper Direct to Web’s performance.

To see the rules that fire as Direct to Web renders pages, run your application with
the switch -D2WTraceRuleFiringEnabled YES.

Rules and the Web Assistant
The Web Assistant defines rules that pertain to specific entities and properties in
your application, unlike the rules from the Direct to Web framework. These rules
have a priority of 100, which override the default rules in the Direct to Web
framework. Consequently, if you want to define your own default rules that the
Web Assistant can override, you need to specify them with a priority between 11
and 99.

When you click Update in the Web Assistant window, the settings are compared to
the settings on the server and the appropriate rules are added or deleted from the
rule database in memory. When you click Save in the Web Assistant window, the
rule database is stored in the application’s user.d2wmodel file.

C H A P T E R 3

Direct to Web Architecture

The Rule System 73
Preliminary  Apple Computer, Inc. November 2002

To build the Web Assistant’s list of available task pages and property-level
components, Direct to Web uses the rule system differently from when it renders a
page. Instead of firing the single best candidate rule to find a particular key, Direct
to Web asks for all rules that can resolve the key given the state of the Direct to Web
context and collects the resulting values into a list that the Web Assistant presents
to you. Two special keys are handled this way: pageAvailable for collecting task
pages and componentAvailable for collecting property-level components.

If you want to see which rules the Web Assistant creates and deletes at runtime, you
can run your application with the switch
-D2WTraceRuleModificationsEnabled YES.

Rule Firing Cache
When a rule fires, its right-hand-side value is cached to improve Direct to Web’s
rendering performance. Once the value is cached, subsequent requests for the key
may cause the rule engine to access the cache to resolve its value instead of finding
a rule to fire. The cache is retained for the life of the application or until you click
Update, Save, or Revert in the Web Assistant.

It is important to note that the right-hand-side value is cached based on the values
of a collection of keys that does not necessarily include all of the keys on the
left-hand side of the rule. Only the values of a list of significant keys and the
right-hand-side key are used to uniquely identify the cache entry. By default, the
significant keys are

� task

� entity

� propertyKey

� configuration

The configuration key refers to the named configuration of the current page. You
can add to this list using the D2W class’s newSignificantKey method.

Consider this rule:

((task = “edit”) and (entity.name = “Customer”)

and (propertyKey = “agent”))

=> componentName = “D2WEditToOneRelationship”

74 The Rule System
Preliminary  Apple Computer, Inc. November 2002

C H A P T E R 3

Direct to Web Architecture

When it fires, Direct to Web creates the cache entry described in Table 3-8.

If the Direct to Web context is asked for the value of the componentName key again,
and the context’s values for task, entity, propertyKey, and configuration are
unchanged, this rule does not fire. Instead, the rule system uses the cached value.
On the other hand, if the value of any of these keys changes, the cache entry no
longer applies and the rule engine must find a rule to fire to resolve the
componentName key.

Caching Gotchas

If you watch the rules as they fire (with -D2WTraceRuleFiringEnabled YES), you may
find rules that fire when you expect Direct to Web to use the values in the cache. Or
rules you expect to fire don’t appear because Direct to Web gets the values from the
cache.

To see how a rule might fire when you expect its value to be cached, consider the
rule that resolves the look key, which defines whether the application is using the
Basic look, the Neutral look, or the WebObjects look. Suppose the rule is

true => look = “NeutralLook”

The first time this rule fires is when the Direct to Web factory asks for the name of
the Direct to Web template to display the QueryAll page. The following cache entry
is created:

Table 3-8 Example of Cached Rule

task “edit”
entity <EOEntity Customer>

propertyKey “agent”
configuration null

key componentName

value “D2WEditToOneRelationship”

C H A P T E R 3

Direct to Web Architecture

The Rule System 75
Preliminary  Apple Computer, Inc. November 2002

Note that the entity key is null. The next time Direct to Web asks for the look key
is when it wants to know the background color for the Query form table. The entity
is still null so Direct to Web gets the value from the cache.

Now the QueryAll template begins to iterate through the entities. It sets the first
entity to the Administrator EOEntity. This time the entity key is no longer null so
the old cache entry does not apply. Consequently, the rule engine fires the look rule
again.

What is more difficult to debug is when the rule engine resolves a key using the
cache when you expect a rule to fire. This happens when the outcome of the rule
depends on a key that is not cached (that is, not in the list of significant keys). This
can arise in an application that has different behavior depending on the user’s
access privileges.

Consider an online real estate database application that behaves differently based
on the user’s access privileges. In particular, the real estate agent (access level 1) sees
the AgentListListing template and the customer (access level 3) sees the
CustomerListListing template. You can set this up with these rules:

((task = “list”) and (entity = “Listing”) and (session.user.accessLevel = 1))

=> pageName = “AgentListListing”

((task = “list”) and (entity = “Listing”) and (session.user.accessLevel = 3))

=> pageName = “CustomerListListing”

Table 3-9 Example of Cached Rule First Time it Fires

task “queryAll”
entity null
propertyKey null
configuration null

key look
value “NeutralLook”

76 The Rule System
Preliminary  Apple Computer, Inc. November 2002

C H A P T E R 3

Direct to Web Architecture

Suppose the real estate agent logs into the application and accesses the list page.
Direct to Web creates this cache entry:

Later a customer logs on and accesses the list page. Instead of showing the customer
list page, Direct to Web displays the real estate agent’s list page, which is an obvious
security violation. This happens because the second rule never fires. Instead, the
cache entry from the first rule resolves the value for the pageName key.

To fix the application, you need to add session.user.accessLevel to the list of
significant keys using the D2W class’s newSignificantKey method. For example,
D2W.newSignificantKey(“session.user.accessLevel”);.

Table 3-10 Cached Rule for Real Estate Agent Login

task “list”
entity <EOEntity Listing>
propertyKey null
configuration null

key pageName
value “AgentListListing”

task entity propertyKey configuration key value

“list” <EOEntity

Listing>

null null pageName “AgentListListing”

Adding a Logo to Your Direct to Web Pages 77
Preliminary  Apple Computer, Inc. November 2002

C H A P T E R 4

4 Customizing a Direct to Web
Application

This chapter shows some of the ways you can customize the behavior of a Direct to
Web application. Specifically, this chapter discusses how to

� add a logo to your Direct to Web pages

� use Direct to Web in other WebObjects applications

� modify the Direct to Web factory

� create a custom property-level component

� modify a Direct to Web task

� add a task to Direct to Web

� add methods to the Direct to Web rule engine

Adding a Logo to Your Direct to Web Pages

The Neutral look is well-suited for adding a logo because it doesn’t already display
the Apple or WebObjects logos, unlike the Basic and WebObjects looks. To add a
company logo to your Direct to Web pages, you need to add the HTML code that
displays the logo to two components: Main.wo, which implements the login page,
and PageWrapper.wo, which provides the backdrop for all of the pages Direct to Web
generates. In this example, the Apple logo is added to PageWrapper.wo.

1. Edit PageWrapper.html. Line five reads:

<TABLE BORDER=0 CELLPADDING=4 CELLSPACING=0 WIDTH=”99%”>

After this line add

78 Using Direct to Web in Other WebObjects Applications
Preliminary  Apple Computer, Inc. November 2002

C H A P T E R 4

Customizing a Direct to Web Application

<TR>

<TD><WEBOBJECT NAME=Image1></WEBOBJECT></TD>

<TD COLSPAN=3></TD>

</TR>

2. Edit PageWrapper.wod to specify the bindings for the WOImage. Add the
following lines:

Image1: WOImage {

filename = “Apple-fade.gif”;

framework = “JavaDirectToWeb”;

}

Now all of the pages Direct to Web generates appear with the Apple logo. If you
want to use a custom image already added to your WebObjects project, filename
would be the image name, and framework would most likely be “app”.

 Using Direct to Web in Other WebObjects Applications

WebObjects applications that were not generated using the Direct to Web option in
the wizard can use the Direct to Web framework to display query, list, edit, and
other pages in the Direct to Web repertoire. Making use of Direct to Web can be a
convenient shortcut for many applications when all they need is a standard
database-related page. They can use Direct to Web in one of two ways:

� by embedding Direct to Web components in the pages of their application

� by linking to a dynamically created Direct to Web page and appropriately
implementing the action method invoked when the link is clicked

Embedding Direct to Web Components
Using a Direct To Web component is not much different than using any other
reusable component. In this section you create a D2WQuery that searches for
Listing entities based on the address. The procedure is the following:

C H A P T E R 4

Customizing a Direct to Web Application

Using Direct to Web in Other WebObjects Applications 79
Preliminary  Apple Computer, Inc. November 2002

1. Add the Direct to Web and the Direct to Web Generation frameworks to your
project. The path for these frameworks is /System/Library/Frameworks and the
file names are JavaDirectToWeb.framework, JavaDTWGeneration.framework, and
JavaEOProject.framework.

2. Decide which Direct to Web component you want to use and become familiar
with its API.

See the “D2W” class reference in the WebObjects API Reference for summaries
of these components.

3. Put a WebObjects tag for the component in the page that is to display it.

<WEBOBJECT NAME=MyD2WQuery></WEBOBJECT>

This is a step you can complete in WebObjects Builder. The reusable components
are available from the “DirectToWeb” palette.

4. Make the appropriate bindings for the component.

MyD2WQuery: D2WQuery {

entityName="Listing";

displayKeys="(address.city, address.state, address.zip)";

queryDataSource=listingDisplayGroup.dataSource;

}

All embedded components require an entityName binding to specify the entity
the page works with. Extra bindings could be required, depending on the
functionality of the page. For example, List pages require a dataSource binding.
If you want to use a named configuration, specify it with a pageConfiguration
binding. See “Named Configurations” (page 46) for more information about
named configurations.

You can also complete this step in WebObjects Builder.

5. If necessary, implement the action method for the component.

Note: The example below uses a WODisplayGroup with Listing as its entity from
the RealEstate EOModel. The easiest way to put a WODisplayGroup in your
component is using drag-and-drop. Drag the Listing entity in EOModeler onto
your component in WebObjects Builder, and the WODisplayGroup will be
created. You shouldn’t need to configure anything, so just click Add when
prompted.

80 Using Direct to Web in Other WebObjects Applications
Preliminary  Apple Computer, Inc. November 2002

C H A P T E R 4

Customizing a Direct to Web Application

6. You can customize embedded Direct to Web components using the Web
Assistant. You can launch the Web Assistant using the appletviewer tool.

When the Web Assistant acts upon an application that was not generated using
Direct to Web, it does not automatically track which page is displayed. Thus you
must set the task and entity for the page you want to modify in Expert mode. For
example, if you want to customize a list page for Customers, click Expert mode
and select the list task and the Customer entity. You can then customize a
component in the same way you customize Direct to Web pages. Also, when you
click Update to send the new settings to the application, the browser does not
automatically refresh your page. You must either click the Reload button in your
browser or (especially when you select a new task or entity) you must renavigate
to the page.

By default, your component appears in the Neutral look.

Linking to a Direct to Web Page
The second way to use Direct to Web in you application is to link directly to a
dynamically generated page of the appropriate type. The D2W class defines
methods that create components (inspect, query, list, and so on) defined for an
entity in a session. The returned component objects implement the appropriate
interface:

QueryPageInterface queryPageForEntityNamed (String entity,

WOSession session);

ListPageInterface listPageForEntityNamed (String entity,

WOSession session);

EditPageInterface editPageForEntityNamed (String entity,

WOSession session);

InspectPageInterface inspectPageForEntityNamed (String entity,

WOSession session);

SelectPageInterface selectPageForEntityNamed (String entity,

WOSession session);

EditRelationshipPageInterface editRelationshipPageForEntityNamed

(String entity, WOSession session);

QueryAllPageInterface queryAllPage (WOSession session);

To create a named configuration page, you use the method

WOComponent pageForConfigurationNamed

C H A P T E R 4

Customizing a Direct to Web Application

Using Direct to Web in Other WebObjects Applications 81
Preliminary  Apple Computer, Inc. November 2002

(String namedConfiguration, WOSession session);

To link to a Direct to Web page, you need to implement an action method that
returns a Direct to Web component implementing the appropriate page interface.

Implementing the Action Method

To implement the action methods that link to Direct to Web pages, you must use
methods of the D2W class and the page-specific Direct to Web interfaces. You also
need to specify a hyperlink, active image, or similar HTML control that invokes the
action method. The following example shows such a hyperlink; first, the WEBOBJECT
tag in the HTML template file:

<WEBOBJECT name=D2WListPage>D2W list page</WEBOBJECT>

Then, in the .wod file, bind the hyperlink to the d2wList action method:

D2WListPage: WOHyperlink {

 action = d2wList;

}

The action method must return a component (that is, a WOComponent object) that
implements the interface appropriate to the required type of page. For example, if
you want to link to a dynamically generated list page, the component returned must
implement the ListPageInterface interface. The D2W class provides methods that
create such components:

import com.webobjects.directtoweb.*;

.

.

.

public WOComponent d2wList() {

ListPageInterface lpi =

D2W.factory().listPageForEntityNamed("Listing",session());

lpi.setDataSource(listingDisplayGroup.dataSource());

lpi.setNextPage(this);

return (WOComponent)lpi;

}

82 Using Direct to Web in Other WebObjects Applications
Preliminary  Apple Computer, Inc. November 2002

C H A P T E R 4

Customizing a Direct to Web Application

Notice that before you return the component, you must set things such as the data
source for the component and the page to go to when users click Return
(setNextPage). This example assumes that the data you want to display is contained
in the EODataSource for a WODisplayGroup called listingDisplayGroup.

Setting Up a Next-Page Delegate

For some pages, you need to specify the action method that navigates to the next
page. Consider a component called MyListPage that displays a list of objects and
has a hyperlink that adds objects to the list. To determine which objects to add, the
component invokes a Direct to Web query page.

The query page behavior differs from the normal Direct to Web query page
behavior in two ways:

� Normally a query page creates a Direct to Web list page when the user clicks the
Search DB button. In this example, however, the query page jumps back to the
MyListPage component.

� When the query executes, it adds the objects to the list of objects displayed by
the MyListPage component, an action the normal query component does not
perform.

To implement this custom behavior, you need to define and instantiate a delegate
object in addition to creating the query component. The delegate object must
implement the NextPageDelegate interface and include a method called nextPage,
which is invoked when the user clicks the submit button for the query page (Query
DB). The query component’s next page delegate must be assigned to this object
using the nextPageDelegate method.

Listing 4-1 shows how this can be done.

Listing 4-1 Sample code that sets up a next-page delegate

public class MyListPage extends WOComponent {

public WODisplayGroup myDisplayGroup;

...

public WOComponent showD2WQuery() {

QueryPageInterface qpi =

C H A P T E R 4

Customizing a Direct to Web Application

Using Direct to Web in Other WebObjects Applications 83
Preliminary  Apple Computer, Inc. November 2002

D2W.factory().queryPageForEntityNamed(“Customer”, session());

qpi.setNextPageDelegate (new NextPageDelegate() {

// delegate implementation

public WOComponent nextPage(WOComponent sender) {

EODataSource ds;

NSArray objectsToAdd;

Enumeration e;

ds =((QueryPageInterface)sender).queryDataSource();

objectsToAdd = ds.fetchObjects();

e = objectsToAdd.objectEnumerator();

while (e.hasMoreElements()) {

EOEnterpriseObject eo;

 eo =(EOEnterpriseObject)e.nextElement();

MyListPage.this.myDisplayGroup.

insertObjectAtIndex(eo,0);

}

return MyListPage.this;

}

});

return (WOComponent) qpi;

}

}

The showD2WQuery method first creates a query page component. It then creates a
delegate object and sets the query page’s next-page delegate to the newly created
object. Finally, the method returns the new query page component, which causes
WebObjects to display the query page.

The next-page delegate object contains an action method called nextPage, which is
invoked when the user clicks Query DB on the query page. This method gets the
query data source containing the query specification. Next, the nextPage method
fetches the objects matching the query specification and adds them to the display
group in the MyListPage component. Finally, it returns the MyListPage component,
where you have access to the newly fetched objects in the WODisplayGroup. The
WODisplayGroup could be hooked up to a WORepetition which then lists all the
fetched objects.

Note: If you get a null pointer exception when trying this example, one thing to
check is that the WODisplayGroup myDisplayGroup gets instantiated.

84 Using Direct to Web in Other WebObjects Applications
Preliminary  Apple Computer, Inc. November 2002

C H A P T E R 4

Customizing a Direct to Web Application

Setting Up the Page Wrapper

Every application that links to a dynamically created Direct to Web page should
have a component called PageWrapper.wo. This component acts as a “wrapper” for
the dynamically generated content and can have customized header and footer
material. If your application does not have a page wrapper, Direct to Web displays
your pages in an empty page wrapper. Listing 4-2 and Listing 4-3 show how a
PageWrapper.wo component might be set up. You can use a text editor, Project
Builder, or WebObjects Builder to construct this component.

Listing 4-2 PageWrapper.html example

<HTML>

<WEBOBJECT name=Head></WEBOBJECT>

<BODY>

<WEBOBJECT name=BodyContainer>

<WEBOBJECT name=Body></WEBOBJECT>

</WEBOBJECT>

</BODY>

</HTML>

Listing 4-3 PageWrapper.wod example

BodyContainer: WOBody {

 filename = "Background.gif";

 framework = "JavaDirectToWeb";

 bgcolor="#c0c0c0";

 TEXT = "#000000";

 LINK = "#0000F0";

 VLINK = "#0000F0";

 ALINK = "#FF0000";

}

Head : D2WHead {

 _unroll = true;

}

Body: WOComponentContent {

C H A P T E R 4

Customizing a Direct to Web Application

Modifying the Direct to Web Factory 85
Preliminary  Apple Computer, Inc. November 2002

 _unroll = true;

};

The only required component in PageWrapper.wo is the WOComponentContent. The
other components shown in the example are optional, and you can create your own
header, footer, and body-container components for your dynamically generated
pages.

The _unroll attribute, when set to true, enables the Web Assistant to generate a
static component from the dynamically generated one.

Modifying the Direct to Web Factory

You can override the page-creation methods of the D2W class to customize the
components they return. The defaultPage method of the D2W class is one you might
want to override; this method returns the application’s default page, which is the
query-all page by default.

If you make a subclass of D2W to override or add certain methods, make sure you
call the setFactory class method with an instance of the new class as the argument.

Listing 4-4 is an example of how to extend the D2W class.

Listing 4-4 Customizing the D2W class

import com.webobjects.foundation.*;

import com.webobjects.eocontrol.*;

import com.webobjects.directtoweb.*;

import com.webobjects.appserver.*;

public class D2WExtendedFactory extends D2W {

 public WOComponent defaultPage (WOSession session) {

 return WOApplication.application().

pageWithName("MyDefaultPage", session.context());

 }

86 Creating a Custom Property-Level Component
Preliminary  Apple Computer, Inc. November 2002

C H A P T E R 4

Customizing a Direct to Web Application

}

Add the following Java code to the application constructor in the application.java
file:

D2W.setFactory(new D2WExtendedFactory());

Creating a Custom Property-Level Component

Sometimes you need a custom property-level component that implements
specialized behavior or that works with a type of attribute that Direct to Web
doesn’t already support (such as a QuickTime movie). Direct to Web provides a
property-level component called D2WCustomComponent to make it easier to
create such a component. To use the D2WCustomComponent, you first create a
custom component. Then you use the Web Assistant to tell Direct to Web to use it.

Specifying the Custom Component
The custom property-level component must be a reusable component that defines
two keys: object and key. The value for object specifies the enterprise object that the
reusable component manipulates, for example, a Customer object. The value for key
specifies the key of the property that the component manipulates, for example,
firstName.

You can get the property by defining two instance variables in your component:

EOEnterpriseObject object;

String key;

and using the EOKeyValueCoding method valueForKey:

String first = object.valueForKey(key);

To store a value for the property, you use takeValueForKey:

object.takeValueForKey(first, key);

C H A P T E R 4

Customizing a Direct to Web Application

Creating a Custom Property-Level Component 87
Preliminary  Apple Computer, Inc. November 2002

If you are using a nonsynchronizing component, you need to get the values for the
object and key bindings using the valueForBinding method before you get or store
the property.

EOEnterpriseObject object = valueForBinding(“object”);

String key = valueForBinding(“key”);

“EditStatePopup Listings” (page 105) shows an example custom component called
EditStatePopup that uses a pop-up list to edit US states. The example lists the .html,
.wod, and .java files that specify the custom component.

Using the Custom Component With Direct to Web
Once the custom component has been compiled, you can use the Web Assistant to
instruct your Direct to Web application to use it. Follow these steps to configure
your application to use the pop-up list state editing component for the state
attribute on the ListingAddress edit page:

1. Open the Web Assistant. See “Customizing Your Application With the
WebAssistant” (page 33).

2. Click the “Expert mode” button.

In Expert mode, you can make changes that affect all pages for a given task.

3. Select the Properties tab.

4. Select the edit task and the ListingAddress entity.

5. Click state in the Show column.

6. In the right column, choose D2WCustomComponent from the pop-up list.

7. Enter the name EditStatePopup in the Component text box.

You can also use the Web Assistant to configure your application to use a custom
component on every edit page by following these steps:

1. Select the edit task and “*all*” for the entity.

2. Select the data type your component handles in the type browser in the second
column.

3. In the right column, choose D2WCustomComponent from the pop-up list.

4. Enter the name of your component in the Component text box.

88 Modifying a Direct to Web Template
Preliminary  Apple Computer, Inc. November 2002

C H A P T E R 4

Customizing a Direct to Web Application

You can also configure your application to use the custom component by setting
rules with the rule editor instead of using Web Assistant. To do so, use the rules
shown in Listing 4-5. (To open the user.d2wmodel in the Resources group of Project
Builder’s main window, drag its icon in Project Builder onto the RuleEditor icon in
the Dock.)

Listing 4-5 Setting Rules With Rule Editor

((task = “edit”) and (entity.name = “ListingAddress”)

and (propertyKey = “state”)

=> componentName = “D2WCustomComponent”

((task = “edit”) and (entity.name = “ListingAddress”)

and (propertyKey = “state”)

=> customComponentName = “EditDatePopup”

You also need to set the assignment class (Assignment) and the priority (100) for
each rule. For more information about using the rule editor, see “Adding Rules to
Define the Default Behavior” (page 93).

Modifying a Direct to Web Template

To change the appearance and function of all the pages Direct to Web generates for
a particular task, you need to modify its template. You can use the Web Assistant to
generate the template and WebObjects Builder to edit it.

To illustrate how to modify a template, this example shows how to add a hyperlink
to the NEUListPage Direct to Web template. The hyperlink simply redraws the page
for now, but in “Adding a New Direct to Web Task to Your Application” (page 90)
it will be modified to navigate to a new task page. For this example, it is easiest to
start by creating a new project.

1. Create a Direct to Web application using the Real Estate database. For the look,
use the Neutral look. See “Creating a Direct to Web Project” (page 12).

C H A P T E R 4

Customizing a Direct to Web Application

Modifying a Direct to Web Template 89
Preliminary  Apple Computer, Inc. November 2002

2. Launch your application and run the Web Assistant. See “Using Your Direct to
Web Application” (page 18) and “Customizing Your Application With the
WebAssistant” (page 33).

3. Generate a Direct to Web template for the list task called “NEUListPage2” using
the Web Assistant. “Generating a Template” (page 51).

4. From Project Builder, double-click NEUListPage2.wo in the project’s Web
Components group. This opens the Direct to Web template in WebObjects
Builder.

Add a hyperlink after the first instance of the metallic Return button. This
instance is displayed when the list is not empty.

Add a WOImage inside the hyperlink.

Bind the following attributes to the WOImage:

Add an action called editList that returns null.

Bind the action to the Edit List hyperlink’s action attribute.

5. Save your template.

6. Build and launch your application. Navigate to a list page. It should now appear
with an Edit button.

Since the editList action returns null, the hyperlink just redraws the page. In
“Adding a New Direct to Web Task to Your Application” (page 90), you will
modify the action to create a new task page.

Attribute Value

filename “EditMetalBtn.gif”

framework “JavaDirectToWeb”

border “0”

90 Adding a New Direct to Web Task to Your Application
Preliminary  Apple Computer, Inc. November 2002

C H A P T E R 4

Customizing a Direct to Web Application

Freezing Your Modified Direct to Web Template
You can freeze a page based on your Direct to Web template using the Web
Assistant. See “Generating Components” (page 47) for more details. Make sure that
your template is selected in the template pop-up list in the third column of the Web
Assistant.

In the example above, the editList action is missing from any component created
by freezing the NEUListPage2 template.

Sometimes you add components to your Direct to Web template that have child
components. For example, tables, WOConditionals, WORepetitions, and any
reusable components with a WOComponentContent dynamic element all have
child components. If you add such components to your Direct to Web template, add
an attribute called _unroll and bind it to YES. This attribute enables Direct to Web to
include the component’s children when you freeze the template.

Adding a New Direct to Web Task to Your Application

A Direct to Web application can be expanded to handle new tasks. This section
describes how to add an example task called edit-list. The edit-list task page looks
like a regular list page but renders the data in text fields so the user can edit the data.
To create a task and use it in a Direct to Web application you need to

� create the Direct to Web template that executes the task

� add rules to configure the default behavior of the page and make it available to
the Web Assistant

� add a hyperlink to an existing Direct to Web template that links to the new task
page

Once you have added the task, you can use it with any entity and configure it with
the Web Assistant.

Note: When you freeze a Direct to Web template, you lose any instance variables
and methods you add to it. To avoid an unknown key exception when you
display the frozen component, you need to add the same variables and methods
to your frozen component.

C H A P T E R 4

Customizing a Direct to Web Application

Adding a New Direct to Web Task to Your Application 91
Preliminary  Apple Computer, Inc. November 2002

Creating the Direct to Web Template
The easiest way to create a Direct to Web template is to modify one that the Web
Assistant generates. The edit-list page most closely resembles the list page.

1. For this example, begin with the project you created in the last section,
“Modifying a Direct to Web Template” (page 88). You should have a modified
NEUListPage2 Direct to Web template in your project.

2. Create a Direct to Web template called “NEUEditListPage” based on the
NEUListPage by following steps 2–4 in “Modifying a Direct to Web Template”
(page 88).

3. Open NEUEditListPage.wo in WebObjects Builder. Follow the directions below to
modify the template.

4. Remove the first and last columns of the main table. The left column contains an
icon that opens the edit page. The right column contains an icon that deletes the
record. Since the list page provides these functions, they are not duplicated on
the edit-list page.

5. Now wrap the main table inside a WOForm. The easiest way to do this is to use
the source view. Find the line

<WEBOBJECT NAME=NavBar></WEBOBJECT>

Change it to

<WEBOBJECT NAME=NavBar></WEBOBJECT><WEBOBJECT NAME=Form1>

Find the first </CENTER> tag in the file. Add a closing </WEBOBJECT> above this line.

6. In the next three steps, you change the Return hyperlink into a submit button
and add a Save submit button that saves the changes to the database. Find the
line

<WEBOBJECT NAME=ShowCancel><WEBOBJECT NAME=BackLink><WEBOBJECT

NAME=ReturnButton></WEBOBJECT></WEBOBJECT></WEBOBJECT>

Add

<WEBOBJECT NAME=SubmitChanges></WEBOBJECT>

between the last two </WEBOBJECT> tags. The line should now look like this:

<WEBOBJECT NAME=ShowCancel><WEBOBJECT NAME=BackLink><WEBOBJECT

NAME=ReturnButton></WEBOBJECT></WEBOBJECT><WEBOBJECT

NAME=SubmitChanges></WEBOBJECT></WEBOBJECT>

92 Adding a New Direct to Web Task to Your Application
Preliminary  Apple Computer, Inc. November 2002

C H A P T E R 4

Customizing a Direct to Web Application

7. In the bindings file, find the bindings for the ReturnButton WebObjects element.
Change it so it reads as follows:

ReturnButton: WOImage {

alt = "Cancels changes";

border = "0";

filename = "CancelMetalBtn.gif";

framework = "JavaDirectToWeb";

name = "Cancels changes";

}

8. Add the following bindings to the bindings file:

Form1: WOForm {

action = backAction;

}

SubmitChanges: WOImageButton {

action = saveChanges;

alt = "Saves your changes";

border = "0";

filename = "SaveMetalBtn.gif";

framework = "JavaDirectToWeb";

name = "Saves your changes";

}

The backAction method is defined by the NEUEditListPage component’s
superclass, D2WListPage.

9. Switch back to the layout view to check for HTML syntax errors.

10. Save the NEUEditListPage.wo file.

11. Modify NEUEditListPage.java by adding the saveChanges method defined in
Listing 4-6.

Listing 4-6 Implementation of the saveChanges method in NEUEditListPage.java

public WOComponent saveChanges() {

WOComponent nextPage = this.nextPage();

try {

session().defaultEditingContext().saveChanges();

} catch (Exception exception) {

C H A P T E R 4

Customizing a Direct to Web Application

Adding a New Direct to Web Task to Your Application 93
Preliminary  Apple Computer, Inc. November 2002

ErrorPageInterface epi = (ErrorPageInterface)

D2W.factory().errorPage(session());

epi.setMessage(exception.toString());

epi.setNextPage(this);

nextPage = (WOComponent)epi;

} finally {

return nextPage;

}

}

This Java code tries to save changes to the session’s editing context. If it fails, it
returns an error page. Otherwise, it returns to the page that called it.

Adding Rules to Define the Default Behavior
When a Direct to Web application launches, it looks for rules in two files in your
project, user.d2wmodel and d2w.d2wmodel, and merges them with the rules defined in
the Direct to Web framework. The Web Assistant modifies the rules in the
user.d2wmodel file. For basic customization tasks you don’t need to edit this file by
hand. When you add rules that change the default behavior of your application, you
modify the d2w.d2wmodel file.

Defining the default behavior of a new task page also informs the Web Assistant of
the new task. Specifically, the Web Assistant collects a list of tasks based on the task
= “taskName” clauses on the left-hand side of rules.

Direct to Web provides an application called RuleEditor to edit the rules.

For the edit-list page example, you need to

� revise the Web Assistant rules in the user.d2wmodel file

The Web Assistant created two rules when you generated the NEUEditListPage
Direct to Web template. These rules state that the NEUEditListPage can and
should be used with the list task. Since you are creating an edit-list task, which
exclusively uses the NEUEditListPage Direct to Web template, these rules must
be changed.

� create a d2w.d2wmodel file and put rules that define the edit-list page default
behavior in it

94 Adding a New Direct to Web Task to Your Application
Preliminary  Apple Computer, Inc. November 2002

C H A P T E R 4

Customizing a Direct to Web Application

Modifying the Web Assistant Rules

1. Quit the Web Assistant if it is still running. You will modify the user.d2wmodel
file using RuleEditor instead of the Web Assistant because the Web Assistant
can’t perform the change.

2. Open the user.d2wmodel in the Resources group of Project Builder in RuleEditor.

The top half of the window lists the rules. The bottom half of the window edits
the selected rule.

3. Select this rule:

((task = “list”) and (look = “NeutralLook”))

=> pageAvailable = “NEUEditListPage”

by clicking on it, and click Delete. The NEUEditListPage is now no longer a
candidate to perform the list task.

4. Select this rule:

(task = “list”) => pageName = “NEUEditListPage”

In the Value text field in the bottom right corner of the screen, enter
“NEUListPage2” (including the quotation marks) and press Return. Direct to Web
displays a NEUListPage2 component as the default list page.

5. Save the rule file.

Choose File > Save.

Adding New Default Rules

1. Create a new rule file.

In RuleEditor, choose File > New.

2. Click New to create a new rule.

The first rule you add is

(task = “editList”) => displayPropertyKeys =

“defaultPropertyKeysFromEntityWithoutRelationships”

using DefaultAssignment as the custom class. The rule’s priority is 50, which
overrides the default Direct to Web framework rules but not the Web Assistant
rules. The details of adding this rule are covered in the next step.

C H A P T E R 4

Customizing a Direct to Web Application

Adding a New Direct to Web Task to Your Application 95
Preliminary  Apple Computer, Inc. November 2002

This rule specifies that the properties on the edit-list page include the entity’s
attributes but not its relationships. The
defaultPropertyKeysFromEntityWithoutRelationships method is defined in the
DefaultAssignment class in the Direct to Web framework.

3. In the first line of the browser labeled “Left-Hand Side,” enter (task =
“editList”), and press Enter.

Choose Custom from the Class pop-up list and enter
com.webobjects.directtoweb.DefaultAssignment in the Custom text box. The
DefaultAssignment class contains methods that derive values from the state in
the Direct to Web context.

Enter displayPropertyKeys in the Key text box.

Enter defaultPropertyKeysFromEntityWithoutRelationships in the Value text
box.

Enter 50 in the Priority text box.

4. Add the following rules by repeating step 3. All of the rules have a priority of 50
and use the Assignment class (not the DefaultAssignment class). Assignment is
available in the Class pop-up list; do not choose Custom.

This rule specifies that the NEUEditListPage Direct to Web template can be used
to display an edit-list page:

(task = “editList”) => pageAvailable = “NEUEditListPage”

This rule specifies that the default edit-list Direct to Web template is
NEUEditListPage:

(task = “editList”) => pageName = “NEUEditListPage”

This rule specifies the name of the banner for the edit-list page:

(task = “editList”) => bannerFileName = “EditMetalBan.gif”

The following rule specifies that the D2WEditString property-level component
can be used to edit strings on the edit-list page. To enter the left-hand side, use
the And and Not buttons.

((task = “editList”) and (not (attribute = null))

and (attribute.className = “java.lang.String”))

=> componentAvailable = “D2WEditString”

This rule specifies that the default property-level component that edits strings
on an edit-list page is D2WEditString:

96 Adding a New Direct to Web Task to Your Application
Preliminary  Apple Computer, Inc. November 2002

C H A P T E R 4

Customizing a Direct to Web Application

((task = “editList”) and (not (attribute = null))

and (attribute.className = “java.lang.String”))

=> componentName = “D2WEditString”

This rule specifies that the D2WEditNumber property-level component can be
used to edit numbers on the edit-list page:

((task = “editList”) and (not (attribute = null))

and ((attribute.className = “java.math.BigDecimal”)

or (attribute.className = “java.lang.Number”)))

=> componentAvailable = “D2WEditNumber”

This rule specifies that the default property-level component that edits numbers
on an edit-list page is D2WEditNumber:

((task = “editList”) and (not (attribute = null))

and ((attribute.className = “java.math.BigDecimal”)

or (attribute.className = “java.lang.Number”)))

=> componentName = “D2WEditNumber”

If your EOModel had dates as some of the attributes, you would also add the
two following rules:

((task = “editList”) and (not (attribute = null))

and (attribute.className = “com.webobjects.foundation.NSTimestamp”))

=> componentAvailable = “D2WEditDate”

((task = “editList”) and (not (attribute = null))

and (attribute.className = “com.webobjects.foundation.NSTimestamp”))

=> componentName = “D2WEditDate”

5. Save the file as d2w.d2wmodel in the top-level directory of your project.

6. Add the d2w.d2wmodel file to your project.

Choose Project > Add Files.

Select the d2w.d2wmodel file created in the previous step and click Open.

Select the Application Server target and click Add.

Adding a Hyperlink to the New Task Page
Now that Direct to Web can display the edit-list task page, you need to add a
hyperlink to the list page to bring up the edit-list page.

C H A P T E R 4

Customizing a Direct to Web Application

Adding a New Direct to Web Task to Your Application 97
Preliminary  Apple Computer, Inc. November 2002

1. Modify the editList method in NEUListPage2.java so it matches the
implementation in listing below:

Listing 4-7 Implementation of the editList method in NEUListPage2.java

public ListPageInterface editList {

ListPageInterface lpi = (ListPageInterface)D2W.factory().

pageForTaskAndEntityNamed(“editList”,entity().name(),

session());

lpi.setNextPage(this);

lpi.setDataSource(displayGroup().dataSource());

return lpi;

}

The edit-list page uses the same interface as the list page (ListPageInterface)
because the pages are very similar. The action method editList creates a new
page using pageForTaskAndEntityNamed because the factory has no special
method to create an edit-list page. You could add such a method if you like. See
“Modifying the Direct to Web Factory” (page 85).

To specify the page to display when the user cancels the edits, the action method
invokes setNextPage. When the user clicks the Cancel button, this list page will
display. Finally, the action method sets the data source for the display group so
it matches the list page’s data source. This ensures that the edit-list page displays
the same objects the list page displays.

2. Build and launch your application. Navigate to a list page. Click the Edit button.

The edit-list page should appear. You can type in a field to edit its contents. If
you click cancel, the edits are discarded. If you click save, the edits are saved to
the database. You can page through the displayed objects with the navigation
bar at the top of the screen. When you move from one page to another, the
edit-list page discards the edits.

3. You can use the Web Assistant to further customize the edit-list page.

98 Adding Authentication to the Main Component
Preliminary  Apple Computer, Inc. November 2002

C H A P T E R 4

Customizing a Direct to Web Application

Adding Authentication to the Main Component

This section describes how to implement basic authentication in a Direct to Web
application.

The default Main component in a Direct to Web application includes a login panel
that resembles Figure 4-1 (page 98).

Figure 4-1 Default Main component

Unless you write custom code, clicking the Login button always lets the user into
the application, regardless of what was entered into the Username and Password
fields. Since the point of the login page is to protect the application from
unauthorized users, it makes sense to implement a real authentication mechanism.

C H A P T E R 4

Customizing a Direct to Web Application

Adding Authentication to the Main Component 99
Preliminary  Apple Computer, Inc. November 2002

Hooking Up the Main Component
To implement login authentication, you need to edit the Main component and add
some custom Java code. Open Main.wo in WebObjects Builder and add a new
action called “login” returning null, as shown in Figure 4-2 (page 99).

Figure 4-2 Add the login action

Change the binding for the action attribute of the Login button by dragging from
the login action to the Login button, as shown in Figure 4-3 (page 100). Choose
“action” from the menu that pops up to bind it.

100 Adding Authentication to the Main Component
Preliminary  Apple Computer, Inc. November 2002

C H A P T E R 4

Customizing a Direct to Web Application

Figure 4-3 Dragging from the action method to the Login button

Add Logic
When you add an action to the Main component, WebObjects Builder generates
Java code for the method based on the inputs specified in the Add Action dialog. In
Main.java, you should see this code for the login action you added:

public WOComponent login() {

return null;

}

C H A P T E R 4

Customizing a Direct to Web Application

Adding Authentication to the Main Component 101
Preliminary  Apple Computer, Inc. November 2002

Clicking the Login button causes its action binding to be resolved. Since the action
binding is “login”, this calls the login method defined in the component. The login
method simply returns null, which returns a new instance of the component calling
the method in WebObjects. In our example, this means a new instance of the Main
component is created, returned, and displayed when the Login button is clicked.
See the WebObjects API Reference for the WOComponent class to better
understand this behavior.

Rather than return the calling component (Main), you can add logic that returns a
different page depending on the success of the authentication. To authenticate a
user, you need to add some data to authenticate against. For now, simply add fields
to Main.java. Later on, you’ll implement authentication against a data source.

Add these fields:

private final String _username = “bucky”;

private final String _password = “longfang”;

You should notice that there are two instance variables already in Main.java,
username and password. If you switch to WebObjects Builder, you can see that these
variables are bound to the value attribute of the Username and Password
WOTextFields, respectively. When the Login button is clicked, the strings contained
in these textfields are automatically put into their corresponding variables, username
and password. This means that you can add logic to test the value of each textfield
against login information in a data store, or in this simple case, against variables in
the class.

Before you add authentication logic, look at the defaultPage method in the class:

public WOComponent defaultPage() {

if (isAssistantCheckboxVisisble()) {

D2W.factory().setWebAssistantEnabled(wantsWebAssistant);

}

return D2W.factory().defaultPage(session());

}

In an uncustomized Direct to Web application, this returns the queryAll page. See
“Query Pages” (page 22) for more information. If a user successfully authenticates,
they will see this page. You will alter the login method to return this page if the user
authenticates successfully. To do this, use a simple conditional:

if (_username.equals(username) && _password.equals(password))

102 Adding Authentication to the Main Component
Preliminary  Apple Computer, Inc. November 2002

C H A P T E R 4

Customizing a Direct to Web Application

If the conditional is true, return the default queryAll page. Otherwise, return the
Main page with the login form. The complete code for Main.java is shown below:

import com.webobjects.foundation.*;

import com.webobjects.appserver.*;

import com.webobjects.directtoweb.*;

public class Main extends WOComponent {

public String username;

public String password;

public boolean wantsWebAssistant = false;

private final String _username = “bucky”;

private final String _password = “longfang”;

public Main(WOContext aContext) {

super(aContext);

}

public WOComponent defaultPage() {

if (isAssistantCheckboxVisible()) {

D2W.factory().setWebAssistantEnabled(wantsWebAssistant);

}

return D2W.factory().defaultPage(session());

}

public boolean isAssistantCheckboxVisible() {

return null == NSProperties.stringForKey(“D2WWebAssistantEnabled”)

|| NSProperties.booleanForKey(“D2WWebAssistantEnabled”);

}

public WOComponent login() {

if (_username.equals(username) && _password.equals(password))

return defaultPage();

return null;

}

}

C H A P T E R 4

Customizing a Direct to Web Application

Adding Authentication to the Main Component 103
Preliminary  Apple Computer, Inc. November 2002

Add Better Logic
In a deployed application, you would likely want to authenticate users to
information in a data store. Fortunately, WebObjects make this easy for you. By
packaging the username and password into a dictionary object, you can use the
EOUtilities class to query a data store for a match of the given username and
password. To use EOUtilities, be sure to import the com.webobjects.eoaccess
package.

The following code example uses the RealEstate EOModel. The isAuthenticated
method checks to see if the given username and password match an Agent entitity’s
login and password attributes, respectively. Here is the code:

public boolean isAuthenticated() {

NSMutableDictionary userCredentials = new NSMutableDictionary();

if (username == null || password == null)

return false;

 userCredentials.setObjectForKey(username, "login");

userCredentials.setObjectForKey(password, "password");

NSArray foundObjects =

EOUtilities.objectsMatchingValues(session().defaultEditingContext(),

"Agent", userCredentials);

if (foundObjects.count() == 1)

return true;

NSLog.out.appendln("Authentication failed.");

return false;

}

Lastly, you want to modify the login method as follows:

public WOComponent login() {

if (isAuthenticated())

return defaultPage();

return null;

}

When a user successfully authenticates, the default Direct to Web page is returned.

104 Adding Authentication to the Main Component
Preliminary  Apple Computer, Inc. November 2002

C H A P T E R 4

Customizing a Direct to Web Application

EditStatePopup.html 105
Preliminary  Apple Computer, Inc. November 2002

A P P E N D I X A

A EditStatePopup Listings

The EditStatePopup.wo property-level component is listed here. The component
has an HTML template (.html) file, a bindings (.wod) file, and a source (.java) file.

EditStatePopup.html

<WEBOBJECT NAME=PopUpButton1></WEBOBJECT>

EditStatePopup.wod

PopUpButton1: WOPopUpButton {

list = stateList;

selection = state;

}

EditStatePopup.java

import com.webobjects.foundation.*;

106 EditStatePopup.java
Preliminary  Apple Computer, Inc. November 2002

A P P E N D I X A

EditStatePopup Listings

import com.webobjects.appserver.*;

import com.webobjects.eocontrol.*;

import com.webobjects.eoaccess.*;

public class EditStatePopup extends WOComponent {

protected String state;

protected EOEnterpriseObject object;

protected String key;

protected NSMutableArray stateList;

public EditStatePopup(WOContext context) {

super(context);

}

public void takeValuesFromRequest (WORequest request, WOContext context)

throws NSValidation.ValidationException {

super.takeValuesFromRequest(request, context);

try {

object.takeValueForKey(state, key);

} catch (Exception exception) {

throw (new NSValidation.ValidationException(“Incorrect state

input”));

}

}

public NSArray stateList() {

if (stateList == null) {

stateList = new NSMutableArray(new Object[] {

"AL", "AK", "AZ", "AR", "CA", "CO", "CT", "DE", "FL", "GA",

"HI", "ID", "IL", "IN", "IA", "KS", "KY", "LA", "ME", "MD",

"MA", "MI", "MN", "MS", "MO", "MT", "NE", "NV", "NH", "NJ",

"NM", "NY", "NC", "ND", "OH", "OK", "OR", "PA", "RI", "SC",

"SD", "TN", "TX", "UT", "VT", "VA", "WA", "WV", "WI", "WY"

});

}

return stateList;

}

public String state() throws Exception {

state = (String)object.valueForKey(key);

return state;

A P P E N D I X A

EditStatePopup Listings

EditStatePopup.java 107
Preliminary  Apple Computer, Inc. November 2002

}

public void setState(String newState) throws Exception {

state = newState;

}

}

108 EditStatePopup.java
Preliminary  Apple Computer, Inc. November 2002

A P P E N D I X A

EditStatePopup Listings

109
Preliminary © Apple Computer, Inc. November 2002

Index

A

appletviewer 33

C

Components
generating with Web Assistant 47
organization 59

confirm page 21
customizing page looks 37

D

Direct to Web
about 9
uses 11–12

Direct to Web Applications
adding a new task 90
Basic look 15
creating 12–13
customizing with WebAssistant 33
different looks 14–16
launching 19
Neutral look 16
project structure 17
WebObjects look 16

Direct to Web Component
linking to 80

Direct to Web Components
Components 54
embedding in other applications 78
generating with Web Assistant 47
organization 59

Direct to Web Context 61
maintaining state 61
providing binding values 61
resolving keys 62

Direct to Web Factory 64
modifying 85

Direct to Web Reusable Components 56
Direct to Web Templates 55

freezing 90
modifying 88
rendering 66

E, F, G, H

edit page 21, 29
edit-relationship page 22, 29
entities

customizing relationships 41–44
property customization 38–41
restricting access 36

error page 22

I, J, K

inspect page 21, 27

L

Launch Arguments
adding 19
reference 20

list page 21, 25
Login Page 20

I N D E X

110
Preliminary © Apple Computer, Inc. November 2002

M

Main.wo
adding authentication 98
description 17, 20

master-detail page 31
MenuHeader.wo description 17

N, O

named configurations 46
Next-Page delegate 82

P

PageWrapper.wo
description 18
modifying 77, 84

Property Keys
resolving 69
setting 68

Property-Level Components 58
creating 86

Q

query page 21, 23
query-all page 21, 22

R

Rule engine 63
Rule System 70

and WebAssistant 72
defining default behavior 93
firing cache 73

S

select component 21, 27
State Dictionary 62

T

Templates
freezing 90
modifying 88

U, V

user templates 51

W, X, Y, Z

WebAssistant
and Rules 72
disabling 19
Entities tab 35
expert mode 44
generating components 47
generating user templates 51
Generation tab 35
launching with appletviewer 33
modes 35
overview 34
Page tab 35, 37
Properties tab 34, 38–41

I N D E X

111
Preliminary © Apple Computer, Inc. November 2002

I N D E X

112
Preliminary © Apple Computer, Inc. November 2002

	Developing WebObjects Applications With Direct to Web
	Contents
	Figures, Listings, and Tables
	Introduction
	About This Book

	An Introduction to Direct To Web
	Creating a Direct to Web Project
	The Different Looks for WebObjects Applications

	Direct to Web Applications:project structure
	Using Your Direct to Web Application
	Launching a Direct to Web Application
	The Login Page
	Dynamically Generated Pages
	Query Pages
	List Pages and Select Components
	Inspect and Edit Pages
	Edit-Relationship Pages
	Master-Detail Pages

	Customizing Your Application With the WebAssistant
	Running the WebAssistant With appletviewer
	WebAssistant Overview
	Restricting Access to Entities
	Customizing Pages
	Setting Which Properties are Displayed
	Changing How Properties Are Displayed
	Textual Attributes and Formatting
	Representation of Relationships

	WebAssistant Expert Mode
	Choosing a Page to Customize
	Named Configurations

	Generating Components
	User Templates
	Generating a Template

	Direct to Web Architecture
	Direct to Web Components
	Direct to Web Templates
	Direct to Web Reusable Components
	Property-Level Components
	Direct to Web Component Organization
	The Direct to Web Context
	Maintaining State
	Providing Binding Values
	Resolving Keys With the State Dictionary
	Resolving Keys With the Application Configuration
	Resolving Derived Values

	The Direct to Web Factory
	Rendering a Direct to Web Page: An Example
	Creating the Query Page

	Rendering the Direct to Web Template
	Setting the Property Key
	Resolving Keys That Depend on the Property
	The Rule System
	Deciding Which Candidate Should Fire
	Rules and the Web Assistant
	Rule Firing Cache
	Caching Gotchas

	Customizing a Direct to Web Application
	Adding a Logo to Your Direct to Web Pages
	Using Direct to Web in Other WebObjects Applications
	Embedding Direct to Web Components
	Linking to a Direct to Web Page
	Implementing the Action Method
	Setting Up a Next-Page Delegate
	Setting Up the Page Wrapper

	Modifying the Direct to Web Factory
	Creating a Custom Property-Level Component
	Specifying the Custom Component
	Using the Custom Component With Direct to Web

	Modifying a Direct to Web Template
	Freezing Your Modified Direct to Web Template

	Adding a New Direct to Web Task to Your Application
	Creating the Direct to Web Template
	Adding Rules to Define the Default Behavior
	Modifying the Web Assistant Rules
	Adding New Default Rules

	Adding a Hyperlink to the New Task Page

	Adding Authentication to the Main Component
	Hooking Up the Main Component
	Add Logic
	Add Better Logic

	EditStatePopup Listings
	EditStatePopup.html
	EditStatePopup.wod
	EditStatePopup.java

	Index

